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ABSTRACT
We present the first scale-dependent measurements of the normalised growth rate
of structure fσ8(k, z = 0) using only the peculiar motions of galaxies. We use data
from the 6-degree Field Galaxy Survey velocity sample (6dFGSv) together with a
newly-compiled sample of low-redshift (z < 0.07) type Ia supernovae. We constrain
the growth rate in a series of ∆k ∼ 0.03hMpc−1 bins to ∼ 35% precision, including
a measurement on scales > 300h−1Mpc, which represents the largest-scale growth
rate measurement to date. We find no evidence for a scale dependence in the growth
rate, or any statistically significant variation from the growth rate as predicted by
the Planck cosmology. Bringing all the scales together, we determine the normalised
growth rate at z = 0 to ∼ 15% in a manner independent of galaxy bias and in excellent
agreement with the constraint from the measurements of redshift-space distortions
from 6dFGS. We pay particular attention to systematic errors. We point out that
the intrinsic scatter present in Fundamental-Plane and Tully-Fisher relations is only
Gaussian in logarithmic distance units; wrongly assuming it is Gaussian in linear
(velocity) units can bias cosmological constraints. We also analytically marginalise
over zero-point errors in distance indicators, validate the accuracy of all our constraints
using numerical simulations, and we demonstrate how to combine different (correlated)
velocity surveys using a matrix ‘hyper-parameter’ analysis. Current and forthcoming
peculiar velocity surveys will allow us to understand in detail the growth of structure
in the low-redshift universe, providing strong constraints on the nature of dark energy.

Key words: surveys, cosmology: observation, dark energy, cosmological parameters,
large scale structure of the Universe
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1 INTRODUCTION

A flat universe evolved according to the laws of General
Relativity (GR), including a cosmological constant Λ and
structure seeded by nearly scale-invariant Gaussian fluctua-
tions, currently provides an excellent fit to a range of obser-
vations: cosmic microwave background data (CMB) (Planck
Collaboration et al. 2013), Baryon acoustic oscillations (An-
derson et al. 2013; Blake et al. 2011b), Supernova observa-
tions (Conley et al. 2011; Ganeshalingam, Li & Filippenko
2013; Freedman et al. 2012), and redshift-space distortion
(RSD) measurements (Blake et al. 2011a; Reid et al. 2012).
While the introduction of a cosmological constant term al-
lows observational concordance, by inducing a late-time pe-
riod of accelerated expansion, its physical origin is currently
unknown. The inability to explain the origin of this energy
density component strongly suggests that our current un-
derstanding of gravitation and particle physics, the founda-
tions of the standard model of cosmology, may be signifi-
cantly incomplete. Various mechanisms extending the stan-
dard model have been suggested to explain this accelera-
tion period such as modifying the Einstein-Hilbert action
by e.g. considering a generalised function of the Ricci scalar
(Sotiriou & Faraoni 2010), introducing additional matter
components such as quintessence models, and investigating
the influence structure has on the large-scale evolution of
the universe (Clifton 2013; Wiltshire 2013).

Inhomogeneous structures in the late-time universe
source gravitational potential wells that induce ‘peculiar
velocities’ (PVs) of galaxies, i.e., the velocity of a galaxy
relative to the Hubble rest frame. The quantity we mea-
sure is the line-of-sight PV, as this component produces
Doppler distortions in the observed redshift. Determination
of the line-of-sight motion of galaxies requires a redshift-
independent distance estimate. Such estimates can be per-
formed using empirical relationships between galaxy prop-
erties such as the ‘Fundamental Plane’ or ‘Tully-Fisher’ re-
lation, or one can use ‘standard candles’ such as type Ia su-
pernovae (Colless et al. 2001; Springob et al. 2007; Magoulas
et al. 2010; Turnbull et al. 2012). A key benefit of directly
analysing PV surveys is that their interpretation is inde-
pendent of the relation between galaxies and the underlying
matter distribution, known as ‘galaxy bias’ (Cole & Kaiser
1989). The standard assumptions for galaxy bias are that it
is local, linear, and deterministic (Fry & Gaztanaga 1993);
such assumptions may break down on small scales and intro-
duce systematic errors in the measurement of cosmological
parameters (e.g. Cresswell & Percival 2009). Similar issues
may arise when inferring the matter velocity field from the
galaxy velocity field: the galaxy velocity field may not move
coherently with the matter distribution, generating a ‘veloc-
ity bias’. However such an effect is negligible given current
statistical errors (Desjacques et al. 2010).

Recent interest in PV surveys has been driven by the
results of Watkins, Feldman & Hudson (2009), which suggest
that the local ‘bulk flow’ (i.e. the dipole moment) of the
PV field is inconsistent with the predictions of the standard
ΛCDM model; other studies have revealed a bulk flow more
consistent with the standard model (Ma & Scott 2013). PV
studies were a very active field of cosmology in the 1990s as
reviewed by Strauss & Willick (1995) and Kaiser (1988).

The quantity we can directly measure from the 2-point

statistics of PV surveys is the velocity divergence power
spectrum1. The amplitude of the velocity divergence power
spectrum depends on the rate at which structure grows and
can therefore be used to test modified gravity models, which
have been shown to cause prominent distortions in this mea-
sure relative to the matter power spectrum (Jennings et al.
2012). In addition, by measuring the velocity power spec-
trum we are able to place constraints on cosmological param-
eters such as σ8 and Ωm (the r.m.s of density fluctuations,
at linear order, in spheres of comoving radius 8h−1Mpc; and
the fractional matter density at z = 0 respectively). Such
constraints provide an interesting consistency check of the
standard model, as the constraint on σ8 measured from the
CMB requires extrapolation from the very high redshift uni-
verse. For recent cosmological analysis of PV surveys of this
nature see Gordon, Land & Slosar (2007); Abate & Erdoǧdu
(2009).

The growth rate of structure f(k, a) describes the rate
at which density perturbations grow by gravitational am-
plification. It is generically a function of the cosmic scale
factor a, the comoving wavenumber k and the growth fac-
tor D(k, a); expressed as f(k, a) ≡ d lnD(k, a)/d ln a. We
define δ(k, a) ≡ ρ(k, a)/ρ̄(a) − 1, as the fractional matter
over-density and D(k, a) ≡ δ(k, a)/δ(k, a = 1). The tempo-
ral dependence of the growth rate has been readily measured
(up to z ∼ 0.9) by galaxy surveys using redshift-space distor-
tion measurements (Beutler et al. 2013; Blake et al. 2011a;
de la Torre et al. 2013), while the spatial dependence is cur-
rently only weakly constrained2, particularly on large spatial
scales (Bean & Tangmatitham 2010; Daniel & Linder 2013).
Recent interest in the measurement of the growth rate has
been driven by the lack of constraining power of geometric
probes on modified gravity models, which can generically
reproduce a given expansion history (given extra degrees
of freedom). Combining measurements from geometric and
dynamical probes, therefore, allows strong constraints to be
placed on modified gravity models (Linder 2005).

A characteristic prediction of GR is a scale-independent
growth rate, while modified gravity models commonly in-
duce a scale-dependence in the growth rate. For f(R) theo-
ries of gravity this transition regime is determined by the
Compton wavelength scale of the extra scalar degree of
freedom (for recent reviews of modified gravity models see
Clifton et al. (2012); Tsujikawa (2010)). Furthermore, clus-
tering of the dark energy can introduce a scale-dependence
in the growth rate (Parfrey, Hui & Sheth 2011). Such prop-
erties arise in scalar field models of dark energy such as
quintessence and k-essence (Caldwell, Dave & Steinhardt
1998; Armendariz-Picon, Mukhanov & Steinhardt 2000).
The dark energy fluid is typically characterised by the effec-
tive sound speed cs and the transition regime between clus-
tered and smooth dark energy is determined by the sound
horizon (Hu & Scranton 2004). The clustering of dark en-
ergy acts as a source for gravitational potential wells; there-
fore one finds the growth rate enhanced on scales above the

1 Note in this analysis we will constrain the ‘velocity power spec-

trum’ which we define as a rescaling of the more conventional
velocity divergence power spectrum (see Section 3).
2 A scale dependent growth rate can be indirectly tested using
the influence the growth rate has on the halo bias e.g. Parfrey,
Hui & Sheth (2011).
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sound horizon. In quintessence models c2s = 1; therefore the
sound horizon is equal to the particle horizon and the effect
of this transition is not measurable. Nevertheless, in mod-
els with a smaller sound speed (c2s � 1) such as k-essence
models, this transition may have detectable effects3.

Motivated by these arguments we introduce a method
to measure the scale-dependence of the growth rate of struc-
ture using PV surveys. Observations from PVs are unique
in this respect as they allow constraints on the growth rate
on scales inaccessible to RSD measurements. This sensitiv-
ity is a result of the relation between velocity and density
modes v(k, z) ∼ δ(k, z)/k which one finds in Fourier space at
linear order (Dodelson 2003). The extra factor of 1/k gives
additional weight to velocities for larger-scale modes relative
to the density field. Furthermore, given the location of PV
surveys at low redshifts, transforming the true observables
(angles and redshifts) to comoving distances only generates a
very weak model dependence through the Alcock-Paczynski
effect.

A potential issue when modelling the velocity power
spectrum is that it is known to depart from linear evolution
at a larger scale than the density power spectrum (Scocci-
marro 2004; Jennings, Baugh & Pascoli 2011). We pay par-
ticular attention to modelling the non-linear velocity field
using two loop multi-point propagators (Bernardeau, Crocce
& Scoccimarro 2008). Additionally, we suppress non-linear
contributions by smoothing the velocity field using a grid-
ding procedure. Using numerical N -body simulations we val-
idate that our constraints contain no significant bias from
non-linear effects.

For our study we use the recently compiled 6dFGSv
data set along with low-redshift supernovae observations.
The 6dFGSv data set represent a significant step forward in
peculiar velocity surveys; it is the largest PV sample con-
structed to date by a factor of ∼ 3, and it covers nearly the
entire southern sky. We improve on the treatment of sys-
tematics and the theoretical modelling of the local velocity
field, and explore a number of different methods to extract
cosmological constraints. We note that the 6dFGSv data set
will also allow constraints on the possible self-interaction of
dark matter (Linder 2013), local non-Gaussianity (Ma, Tay-
lor & Scott 2013), and the Hubble flow variance (Wiltshire
et al. 2013).

The structure of this paper is as follows. In Section 2
we introduce the PV surveys we analyse; Section 3 describes
the theory behind the analysis and introduces a number of
improvements to the modelling and treatment of systemat-
ics effects. We validate our methods using numerical simu-
lations in Section 4; the final cosmological constraints are
presented in Section 5. We give our conclusion in Section 6.

2 DATA & SIMULATED CATALOGUES

2.1 6dFGS Peculiar Velocity Catalogue

The 6dF Galaxy Survey is a combined redshift and pecu-
liar velocity survey that covers the whole southern sky with

3 The presence of dark energy clustering requires some deviation
from w = −1 in the low redshift universe.

the exception of the region within 10 degrees of the Galac-
tic Plane. The survey was performed using the Six-Degree
Field (6dF) multi-fibre instrument on the UK Schmidt Tele-
scope from 2001 to 2006. Targets were selected from the K
band photometry of the 2MASS Extended Source Catalog
(Jarrett et al. 2000). For full details see Jones et al. (2004,
2006, 2009). To create the velocity sub-sample from the full
6dF galaxy sample the following selection requirements were
imposed: reliable redshifts (i.e. redshift quality Q = 3 – 5),
redshifts less than cz < 16120 km s−1 in the CMB frame,
galaxies with early-type spectra, sufficiently high signal-to-
noise ratio (S/N > 5A−1), and velocity dispersions greater
than the instrumental resolution limit

(
σ0 ≥ 112 km s−1

)
.

This sample represents the largest and most uniformly dis-
tributed PV survey to date (Fig. 1 (top panel)). The final
number of galaxies with measured PVs is 8896 and the av-
erage fractional distance error is σd = 26%. The PVs for
6dFGSv are derived using the Fundamental Plane relation
(for details of the calibration of this relation see Magoulas
et al. (2010, 2012)). Using the fitted Fundamental Plane re-
lation, the final velocity catalogue is constructed in a forth-
coming paper (Springob et al. (in prep)). For each galaxy in
the catalogue we determine a probability distribution for the
quantity log10 (Dz/DH); where Dz and DH are respectively
the ‘observed’ comoving distance inferred from the observed
redshift and the true comoving distance.

2.2 Low-z SNe catalogue

To extend the velocity sample into the northern hemisphere
and cross-check the results for systematic errors, we con-
struct a new homogeneous set of low-redshift Supernovae
(SNe). The sample contains SNe with redshifts z < 0.07
and the distribution on the sky is given in Fig. 1 (lower
panel). The sample contains the following: 40 SNe from the
Lick Observatory Supernova Search (LOSS) sample (Gane-
shalingam, Li & Filippenko 2013), analysed using the SALT2
light curve fitter; 128 SNe from Tonry et al. (2003); 135
SNe from the ‘Constitution’ set compiled by Hicken et al.
(2009), where we choose to use the sample reduced using
the multi-color light curve shape method (MLCS) with their
mean extinction law described by Rv = 3.1; 58 SNe in the
Union sample from Kowalski et al. (2008)4; 33 SNe from
Kessler et al. (2009), where we use the sample derived using
MLCS2k2 with Rv = 2.18; and finally 26 SNe are included
from the Carnegie Supernova Project (CSP) (Folatelli et al.
2010). Significant overlap exists between the samples, so for
SNe with multiple distance modulus estimates we calculate
the median value. This approach appears the most conser-
vative given the lack of consensus between light curve re-
duction methods and the correct value of Rv; nevertheless,
we find there are no significant systematic offsets between
the different reduction methods once we correct for zero
point offsets. The final catalogue consists of 303 SNe with
σd ∼ 5%.

We update the redshifts in these samples with the host
galaxy redshifts in the CMB frame given in the NASA Ex-
tragalactic Database (NED), excluding SNe with unknown
host galaxy redshifts; this is necessary as the quoted error

4 The new union2.1 data set adds no additional low-z SNe.
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in the redshift given for SNe data sets is similar to the typi-
cal effect that PVs have on the observed redshift. A number
of these data sets include an error component σv ∼ 300
km s−1 accounting for peculiar motion; where applicable we
removed this error component from the distance modulus
errors by subtracting (5/ log(10))σv/cz. This component is
removed so that we can treat the samples uniformly, and in
our analysis we treat the velocity dispersion as a free param-
eter. The estimated intrinsic scatter in absolute magnitude
σSNe is included in the error budget in all the samples. We
define δm ≡ µobs(z) − µFid(z), where µFid is the distance
modulus calculated in a homogeneous FRW universe at red-
shift z assuming the fiducial cosmology: Ωb = 0.0489,Ωm =
0.3175, ns = 0.9624, w = −1.0, HFid = 67km s−1Mpc−1

(motivated by Planck Collaboration et al. 2013).
For a consistent determination of the line of sight PV,

S, and the quantity δm the value of H0 used to derive the
prediction for the fiducial cosmology µFid(z) needs to be the
same as the value assumed during the light curve fitting pro-
cedure (where µobs(z) is derived). The authors of different
SNe samples have assumed different values of H0 when de-
riving the distance moduli. Therefore before calculating δm
and the PV we correct this using ∆µi = 5 log10(H0,i/HFid),
where H0,i is the assumed H0 value in the ith sample and
HFid is the expansion rate at which we choose to normalise
the sample5. The assumed value of HFid here is simply used
because it is a convenient normalization. As δm is a ratio of
distances it is independent of the assumed value of H0 (the
values used to derive both distance moduli simply need to
be equivalent).

For the rest of the paper we set H0 =
100h km s−1Mpc−1, where h = H0/100. The line of
sight PV is calculated as

S =
ln(10)

5

(
1− (1 + z)2

H(z)dL(z)

)−1

δm. (1)

where dL(z) is the luminosity distance and H(z) the Hubble
expansion rate calculated in the fiducial model at the ob-
served redshift z (the derivation of this equation should be
clear from Eq. (16)).

2.3 Mock Catalogues

We construct two sets of Mock catalogues (I) and (II) us-
ing the GiggleZ N -body simulation (Poole et al. in prep).
The simulation was run inside a periodic box of 1h−1Gpc
with 21603 particles of mass 7.5 × 109h−1M�. The simu-
lation used the GADGET2 code (Springel 2005), and haloes
and sub-haloes were identified using the Subfind algorithm
(Springel et al. 2001). Using the GiggleZ simulations 10 non-
overlapping realisation of PV surveys were constructed for
both Mock set (I) and (II), with the following properties:

• (I) From each central ‘observer’ a random sample of ∼ 3500
Dark Matter haloes were selected within 100h−1Mpc from
the full sample available in the simulation (i.e., full sky
coverage). An uncertainty in the apparent magnitude of

5 In the order that the SNe samples have been intro-
duced the assumed velocity dispersion values are σv =

[300, 500, 400, 300, 300, 300]km s−1 and the assumed values of the
Hubble constant are H0 = [70, 65, 65, 70, 65, 72]km s−1Mpc−1.

σδm ∼ 0.1. was applied to each galaxy. This corresponds to
a distance error of σd ∼ 5% (viz., the approximate distance
uncertainty for SNe).
• (II) From each central observer ∼ 8000 Dark Matter haloes
within 150h−1Mpc were selected from one hemisphere of
the sky. An error in the apparent magnitude fluctuation
was introduced by interpolating from the observed trend
for the 6dFGSv galaxies of σδm with redshift. Fitting a sim-
ple linear relationship to the 6dFGSv data we find σδm =
5(0.102 + 0.597z). The final range of introduced observa-
tional uncertainties is σδm ∼ [0.5, 0.75].

We subsample these haloes randomly from the chosen ob-
server volumes. We limit the size of each hypothetical survey
to reduce large scale correlations between the individual re-
alisations, although we expect that the catalogues may still
contain residual correlations through being drawn from the
same simulation. This situation is more severe for Mock set
(II). In general the purpose of mock set (I) is to test the
validity of our algorithms, various systematic effects and po-
tential bias from non-linear effects. In this case we use mock
set (I) as the geometry (sky coverage) of the PV survey is not
important, at first order, to answer these questions. Mock
(II) is used as an approximate realisation of the 6dFGSv
survey.

In the mock simulations we apply a perturbation to
the PVs that is similar to the scatter induced by observa-
tional error. The process proceeds as follows. We place an
observer in the simulation box and extract from the sim-
ulation the line-of-sight velocity S and true comoving dis-
tance DH of each surrounding galaxy. These quantities al-
low us to determine the observed redshift zobs, from zobs =
(1 + zH)(1 +S/c)− 1, and hence the observed redshift-space
distance Dz. We now calculate the magnitude fluctuation
δm = 5 log10 (Dz/DH) and apply an observational Gaussian
error, using the standard deviations specified above. We do
not attempt to include additional effects such as survey se-
lection functions, which are not required for the analysis
described here.

3 THEORY & NEW METHODOLOGY

Here we discuss a number of issues, including some improve-
ments, in the framework for analysing PV surveys. We pay
particular attention to:

• The covariance matrix of the data (Section 3.1)

• The effects of non-Gaussian observational errors and the
requirement, in order to have Gaussian observational errors,
to use an underlying variable that is linearly related to the
logarithmic distance ratio (Section 3.2)

• The information we can extract from measurements of the
local velocity field using 2-point statistics (Section 3.3)

• Modelling the velocity power spectrum, including non-
linear effects in redshift space (Section 3.4)

• Data compression using gridding methods (Section 3.5)

• Marginalization of the unknown zero point (Section 3.6)

• Combining different correlated data sets using hyper-
parameters (Section 3.7)

c© 2012 RAS, MNRAS 000, 000–000



6dFGSv: Velocity power spectrum analysis 5

Figure 1. Mollweide project of the 6dFGSv sample (upper) and the low-z SNe sample (lower) given in right ascension (RA) and

declination (Dec) coordinates. We grid the RA and Dec coordinates onto a 25×25 grid for the upper plot and a 20×20 grid for the lower

plot. The colour of each cell indicates the number of galaxies with measured PVs in that cell; as given by the colour bars on the right.

The basis of this analysis is quantifying and modelling
the degree to which PVs fluctuate from one part of the uni-
verse relative to other spatially-separated parts. The mag-
nitude of this fluctuation in the PV field is generated by
tidal gravitational fields which are in turn generated by the
degree of departure from a homogeneous FRW metric and
the relationship between density gradients and gravitational
fields.

We introduce a method for extracting scale-dependent
constraints on the normalised growth rate of structure
fσ8(k). We emphasise the unique ability of PV measure-
ments to probe the growth rate of structure on scales
that are not currently accessible to redshift-space distor-
tion (RSD) measurements; and the complementarity that
exists between velocity surveys and RSD measurements in
constraining modified gravity theories. Fig. 2 shows the var-
ious length scales probed by different methods to constrain
gravity.

These methods can also be applied to larger upcom-
ing PV surveys, such as the all-sky HI survey (WALLABY),
the Taipan Fundamental Plane survey, and the SDSS Fun-
damental Plane sample (Colless, Beutler & Blake 2013; Saul-

der et al. 2013) for which it will become even more crucial
to extract unbiased results with accurate error estimates.
Furthermore the improvements considered here will be sig-
nificant for other approaches for extracting information from
velocity surveys, for example by using the cross-correlation
between density and velocity fields.

3.1 Velocity covariance matrix

We start with the assumption that the velocity field is well
described by a Gaussian random field, with zero mean.
Therefore, considering a hypothetical survey of N galax-
ies each with a measured PV S(x, t) = v(x, t) · r̂, one can
write down the likelihood for observing this particular field
configuration as

L =
1

|2πC(v)|1/2
exp

(
−1

2

∑
m,n

Sm(x, t)C(v)−1
mn Sn(x, t)

)
,

(2)
where v(x, t) is the total velocity of the object evaluated
at the spatial position x and time t, and r̂ is a unit vector
in the direction of the galaxy. The desired (unknown) vari-

c© 2012 RAS, MNRAS 000, 000–000
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Figure 2. Scales probed by different methods to constraint grav-

ity. The cosmological probes shown in red lines probe gravity by

its effect on the propagation of light i.e., weak and strong lens-
ing (such measurements probe the sum of the spatial and tem-

poral gravitational potential). Probes that use dynamical mea-

surements are given blue lines (these trace the temporal part of
the gravitational potential). PVs probe the largest scales of any

current probe. Figure adapted from Lombriser et al. (2012).

able in this equation, which depends on the cosmological
model, is the PV covariance matrix. By definition C

(v)
mn ≡

〈Sm(xm)Sn(xn)〉. The validity of the assumptions described
above will be discussed in later sections. The above likeli-
hood estimator yields the probability of the velocity field
configuration (the data d) given the covariance (as deter-
mined by the the cosmological model); this quantity is typ-
ically denoted L ≡ P (d|m). The quantity we are interested
in extracting is the probability of the model given our ob-
servations of the velocity field, viz. P (m|d). Bayes’ theorem
relates these two quantities P (m|d) = P (d|m)P (m)/P (d).
P (d) can be absorbed into a normalization factor and we as-
sume a uniform prior (i.e, P (m) = 1), implying P (m|d) ∝ L.

The physical interpretation of the components of the
covariance matrix are as follows: The diagonal elements can
be viewed as representing cosmic variance (later we add a
further diagonal contribution from observational uncertain-
ties and non-linear contributions). As the fiducial cosmology
is changed, for example, by changing the degree of clustering
in the low-redshift universe, the magnitude of cosmic vari-
ance changes. The covariance between individual PVs (i.e.,
the off-diagonal elements) results from those velocities being
generated by the same underlying density field. Large wave-
length Fourier density modes will have very similar phases
for close pairs of galaxies, thus a similar gravitational force
will be exerted on these galaxies and therefore their PVs will
be correlated.

Hitherto, the covariance matrix C
(v)
mn has been calcu-

lated in terms of the matter power spectrum, P (k). We
suggest that a more natural approach is to express the co-
variance matrix in terms of the velocity divergence power
spectrum. We define the velocity divergence as θ(x, t) ≡
∇ · v(x, t), therefore v(k) = −iθ(k) k

k2
, so the velocity co-

variance matrix is given by

C(v)
mn(xm,xn) =∫
d3k

(2π)3
eik·xm

∫
d3k′

(2π)3
e−ik

′·xn
(x̂m · k) (x̂n · k′)

k′2k2
〈θ(k) θ∗(k′)〉

=

∫
dk

(2π)3

Pθθ(k, a = 1)

k2

∫
dΩke

ik·(xm−xn)
(
x̂m · k̂

)(
x̂n · k̂

)
.

(3)

The simplification results from 〈θ(k) θ∗(k′)〉 ≡ (2π)3δ3(k−
k′)Pθθ(k), where Pθθ(k) is the power spectrum of θ(x, t),
evaluated here at a redshift of zero. The advantage of this
derivation is that one is not required to assume the linear
continuity equation. The analytic form for the angular part
of the integral in Eq. (3) is given in the Appendix of Ma,
Gordon & Feldman (2011) as

W (k, αij , ri, rj) = 1/3 (j0(kAij)− 2j2(kAij)) r̂i · r̂j

+
1

A2
ij

j2(kAij)rirj sin2(αij)
(4)

where αij = cos−1(r̂i · r̂j), Aij ≡ |ri− rj | and ri is the posi-
tion vector of the ith galaxy. For convenience we change the
normalisation of the velocity divergence power spectrum and
define the ‘velocity power spectrum’ as Pvv(k) ≡ Pθθ(k)/k2.
Therefore we have

C(v)
mn =

∫
dk

(2π)3
Pvv(k, a = 1)W (k, αmn, rm, rn) (5)

3.2 The origin of non-Gaussian observational
errors

Observations of the Cosmic Microwave Background have
shown to a very high degree of accuracy that the initial
density fluctuations in the universe are Gaussian in nature,
which implies that the initial velocity fluctuations are also
well-described by a Gaussian random field. Linear evolution
of the velocity field preserves this Gaussianity, as it acts as
a simple linear rescaling. This simplifying property of large
scale density and velocity fields is often taken advantage of
by likelihood estimators such as Eq. (2) which require that
the PV field, Si, be accurately described by a multivariate
Gaussian distribution. Although this is true with regards
to cosmic variance, a crucial issue is that the observational
uncertainty in PV surveys are often highly non-Gaussian in
velocity units. In this section we describe the origin of this
non-Gaussian error component, with particular reference to
a Fundamental Plane survey; we note our conclusions are
equally valid for Tully-Fisher data sets. Furthermore, we
propose a solution to this problem and test its validity us-
ing numerical simulations in Section 4.

The Fundamental Plane relation is defined as Re =
σa0 〈Ie〉b, where Re is the effective radius, σ0 the velocity
dispersion and 〈Ie〉 is the mean surface brightness. In terms
of logarithmic quantities it is defined as r = as + bi + c
(r ≡ log(Re) and i ≡ log(〈Ie〉)) where a and b describe the
plane slope and c defines the zero point. The Fundamental
Plane relation therefore is a simple linear relation when the
relevant variables are described in logarithmic units. Within
this parameter space (or, ‘Fundamental Plane space’) a 3D
elliptical Gaussian distribution provides a excellent empiri-
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6dFGSv: Velocity power spectrum analysis 7

cal fit to the observed scatter of the FP variables6. Changing
the distance measure log(Re) to one not given in logarith-
mic units (i.e., simply Re) one would find that the scatter
of the new variables can no longer be described by a sim-
ple Gaussian distribution. This argument can be extended
to the Tully-Fisher relation, as it has intrinsic scatter that
appears to be modelled well by a Gaussian in absolute mag-
nitude units.

As discussed in Springob et al. (in prep) the funda-
mental quantity derived from the Fundamental Plane re-
lation is the probability of a given ratio between the ob-
served effective radius (observed size) Robs and the in-
ferred physical radius (physical size) Rphy of the specific
galaxy viz., P (log10(Robs/Rphy)). In order to find the re-
sulting probability distributions for peculiar velocities, P (v),
in standard units [km s−1] from the measured quantity
P (log10(Robs/Rphy)) we need to calculate the Jacobian re-
lating these two quantities. Firstly we can convert the log-
arithmic ratio of radii to a logarithmic ratio of comoving
distances. Defining x ≡ log10(Dz/DH), one has

P (x) ≡ P (log10(Dz/DH))

= J(DH, zH)P (log10(Rz/RH))
(6)

The Jacobian term here is approximated by Springob et al.
(in prep)

J(DH, zH) ≈
(

1 +
99.939DH + 0.01636D2

H

3× 105(1 + zH)

)
(7)

where zH is the Hubble redshift. Any dependence on the
assumed cosmology here will be insignificant given the low
redshifts of the observations. The probability distribution
P (x) is measured for each galaxy of the 6dFGSv survey us-
ing Eq. (6); importantly this distribution is very accurately
described by a Gaussian distribution. Fig. 3 gives some ex-
amples for individual galaxies in the 6dFGSv sample.

We can now determine if the transformation from this
distribution into the probability distribution for the PV (i.e.,
P (x) → P (v)) preserves the Gaussian nature of the distri-
bution or if it introduce non-Gaussianity. The transforma-
tion between these two probability distributions can be ac-
curately approximated by

P (v) = P (x)
dx

dv
≈ P (x)

(1 + zH)2

DH log(10)c(1 + z)

dDH

dzH
, (8)

where dDH/dzH = c/(99.939 + 0.01636DH)7. Applying this
non-linear transformation Eq. (8) to the P (x) distributions
given in the 6dFGSv sample we find the resulting velocity
probability distributions, P (v), become significantly skewed
(as shown in Fig. 3) and hence are poorly described by
a Gaussian distributions. In Section 4 we use numerical
N -body simulations to quantify the impact of this non-
Gaussianity on cosmological parameter fits, concluding that
a measurable bias is introduced. To avoid this problem one is

6 This scatter is generated by the PVs of the galaxies and the

intrinsic scatter of the FP relation. Fig. 4 in Magoulas et al. (2012)
shows the scatter of the FP parameters, where one can see the
data is well described by a 3D elliptical Gaussian.
7 This result can be derived from the approximation between

comoving distance and redshift given in Hogg (1999), and is valid
to < 1% within the range of redshift we are interested in.

Figure 3. (Upper) two probability distributions, P (x), for x =
log10 (Dz/DH) from 6dFGSv. (Lower) two probability distribu-

tions, P (vp), for the peculiar velocity vp calculated from the

6dFGSv sample, by using the Jacobian given in Eq. (8). Note
the significant skewness of the lower distributions.

required to adopt a variable for the analysis that is linearly
related to the logarithm of the ratio of comoving distances.

3.2.1 Changing variables

The velocity variable we use is the apparent magnitude
fluctuation, defined by δm(z) = [m(z) − m̄(z)](see, Hui &
Greene 2006; Davis et al. 2011)), where both quantities are
being evaluated at the same redshift (the observed redshift).
So the fluctuation is being evaluated with respect to the ex-
pected apparent magnitude in redshift-space. The over-bar
here refers to the variable being evaluated within a homoge-
neous universe, i.e. in a universe with no density gradients
and as a result no PVs. Recalling that the apparent magni-
tude is defined as

m = M + 5 log10(dL(z)) + 25 (9)

where M is the absolute magnitude and dL(z) is the lu-
minosity distance in parsecs, we find δm(z) = 5x(z). We
must now determine the covariance of magnitude fluctua-
tions Cm

ij ≡ 〈δmi(zi)δmj(zj)〉. The full treatment of this
problem, which is effectively the derivation of the luminosity
distance in a perturbed FRW universe, includes a number
of additional physical effects besides peculiar motion that
act to alter the luminosity distance, namely: gravitational
lensing, the integrated Sachs-Wolfe effect, and gravitational
redshift (Bonvin, Durrer & Gasparini 2006; Pyne & Birkin-
shaw 2004). For the relevant redshift range all these addi-
tional effects are currently insignificant. Here we focus on an
intuitive derivation that captures all the relevant physics.

We first define the fractional perturbation in luminos-
ity distance about a homogeneous universe as δdL(z) ≡
[dL(z) − d̄L(z)]/d̄L(z) and note from Eq. (9) that δm =
(5/ ln 10) δdL . Therefore the problem is reduced to finding
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CL
ij ≡ 〈δdL(zi)δdL(zj)〉. The relationship between the ob-

served flux F and the intrinsic luminosity L is given by

F (z) =
L

4π(1 + z)4

δΩ0

δAe
. (10)

Where δAe is the proper area of the galaxy (emitter) and
δΩ0 is the observed solid angle. The angular diameter dis-
tance and the luminosity distance are defined as

dA =
√
δAe/δΩ0 , dL = dA(1 + z)2, (11)

both of which are valid in homogeneous and inhomogeneous
universes8 (J. E. Peebles 1993). In a homogeneous universe
we have

d̄A(z̄) = χe/(1 + z̄)

χe ≡χ(z̄) = c

∫ z̄

0

dz′/H(z′)

d̄L(z̄) = d̄A(z̄)(1 + z̄)2

(12)

where χ is the comoving distance and H is Hubble’s con-
stant. Introducing a PV component into this homogeneous
system, i.e. perturbing the system, has two effects (at first
order):

• The redshift of the object is perturbed (via the Doppler
effect). For small velocities (i.e., v � c), as is applicable
to local motions of galaxies, the relation between the red-
shift in the homogeneous universe z̄ and the inhomogeneous
universe z is given by

1 + z = (1 + z̄)(1 + ~ve · n̂− ~v0 · n̂), (13)

where ~ve is the emitting galaxy’s velocity, ~v0 is the ob-
server’s velocity relative to the CMB, and n̂ is a unit vector
in the direction of the emitter from the absorber;

• The angular diameter distance is changed as a result of
relativistic beaming. This occurs as the angle of the galaxy
is shifted by δΩ0 → δΩ0(1− 2~v0 · n̂). The result is

dA(z) = d̄A(z̄)(1 + v0 · n̂). (14)

Using Eq. (11), Eq. (13) and Eq. (14) the luminosity distance
in the perturbed universe is given by

dL(z) = d̄L(z̄)(1 + 2ve · n̂− v0 · n̂). (15)

Taylor expanding d̄L(z) about z̄ gives (Hui & Greene 2006)

δdL(z) =
δdL

dL
= r̂ ·

(
~ve −

(1 + z)2

H(z)dL
[~ve − ~v0]

)
(16)

where we work in units with c = 1. This relation is accurate
to first order in perturbation theory, ignoring other contri-
butions. Our Galaxy’s motion is very accurately known from
observations of the CMB therefore we can transform the ob-
served PV to the CMB rest frame and correct for the effect

8 For completeness we note that the term inhomogeneous uni-
verse is used somewhat liberally in this section, the term should
be taken to refer to a weakly perturbed Friedmann-Lemâitre-

Robertson-Walker geometry. In the context of general inhomo-
geneous universes the nature of the luminosity distance relation
is unknown in most cases, and other physical contributions may

become significant.

of v0
9. Given δm = (5/ ln 10) δdL and using Eq. (5) one finds

Cm
ij =

(
5

ln 10

)2(
1− (1 + zi)

2

H(zi)dL(zi)

)(
1− (1 + zj)

2

H(zj)dL(zj)

)
∫

dk

2π2
Pvv(k, a = 1)W (k, αij , ri, rj).

(17)

In Section 3.5 we update the formula for the covariance ma-
trix to account for a smoothing of the velocity field we im-
plement; the updated formula is given in Eq. (29).

3.2.2 Including the intrinsic error

To complete the covariance matrix of magnitude fluctuations
we must add the observational part of the errors, uncorre-
lated between objects. This has two different components:
the error in the measured apparent magnitude fluctuation
σobs and a stochastic noise contribution σv, which is physi-
cally related to non-linear contributions to the velocity (Sil-
berman et al. 2001). The total magnitude scatter per object
is given by

σ2
i = σ2

obs +

(
5

ln 10

)2(
1− (1 + zi)

2

H(zi)dL(zi)

)2

σ2
v, (18)

The updated posterior distribution is therefore given by

P (Σ|δm) = |2πΣ|−1/2 exp

(
−1

2
δmTΣ−1δm

)
, (19)

where

Σij ≡ Cm
ij + σ2

i δij , (20)

where δm is a vector of the observed apparent magnitude
fluctuations. For the SNe sample σobs is the intrinsic mag-
nitude fluctuation; we do not treat this as a free parameter
(i.e., as in Gordon, Land & Slosar 2007), as it likely includes
a contribution from unresolved systematic effects which will
differ between the samples we use.

3.3 Methods to extract information from the
local velocity field

The aim of this section is to outline the parametrisations
of the velocity covariance matrix (Eq. 17) we consider, and
hence the type of cosmological models we constrain.

3.3.1 Traditional parametrisations

We first discuss two different methods already present in
the literature. Both compare data to model by calculating
a model-dependent covariance matrix, but they differ in the
power spectrum model used to generate that covariance ma-
trix. In the first method power spectra are generated for a
range of cosmological models (as described below), while in
the second method the power spectra are generated in a

9 We assume that the correlation between ‘our’ motion and
nearby galaxies is insignificant (i.e., 〈ve, v0〉 = 0). This is justified
given we are working in the CMB frame. Any residual correlations

when working in this reference frame are introduced by the effects
of relativistic beaming which is a function of our local motion.
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6dFGSv: Velocity power spectrum analysis 9

single fiducial cosmological model, and then perturbed in a
series of Fourier bins. The first method is more easily com-
pared directly to physical models, while the second allows
detection of generic scale-dependent effects.

Within the standard cosmological model the velocity
power spectrum Pvv(k) can be calculated as a function of
the cosmological parameters (σ8,Ωm,Ωb, ns, w,H0). The pa-
rameters not previously described are defined as follows: Ωb

is the baryon density divided by the critical density; ns de-
scribes the slope of the primordial power spectrum; w is
the dark energy equation of state; and H0 is the current
expansion rate. Current velocity data sets do not contain
enough statistical power to constrain all these parameters,
therefore we focus on the two most relevant parameters: σ8

which describes the overall normalization and Ωm which con-
trols the scale-dependence of power. Therefore we fix (Ωb =
0.0489, ns = 0.9624, w = −1.0, H0 = 67km s−1Mpc−1) to
the best-fitting Planck values (see, Planck Collaboration
et al. 2013). Now we can parametrise the velocity power
spectrum as Pvv(k) = Pvv(k,Ωm, σ8), and from Eq. (17) and
Eq. (18) we can predict the covariance matrix as a function
of these cosmological parameters, Σ = Σ(Ωm, σ8), such that

P (Ωm, σ8|δm) =

|2πΣ(Ωm, σ8)|−1/2 exp

(
−1

2
δmTΣ−1(Ωm, σ8)δm

)
.

(21)

Note that the quantity |2πΣ(Ωm, σ8)| depends on the cosmo-
logical parameters, as a result we do not expect the poste-
rior distributions to be exactly Gaussian. Somewhat similar
methods were explored by Zaroubi et al. (2001).

The second method involves specifying a fiducial ve-
locity power spectrum PFid

vv (k) which we choose using the
current best-fitting Planck constraints, explicitly (Ωm =
0.3175, σ8 = 0.8344,Ωb = 0.0489, ns = 0.9624, w =
−1.0,H0 = 67km s−1Mpc−1). The power spectrum is now
separated into bins in Fourier space and a free parameter
Ai is introduced and allowed to scale the ‘power’ within the
given k range of a bin. One can hence constrain the ampli-
tude of the velocity power spectrum in k-dependent bins.
This parameterisation is similar in nature to that explored
in Macaulay et al. (2012) and Silberman et al. (2001), al-
though the specifics of the implementation are somewhat
different. This approach is more model-independent than
the first parametrisation because it allows more freedom in
the shape of the velocity power spectrum. Considering a case
with N different bins, we define the centre of the ith bin as
kcen
i and the bin width as ∆i ≡

(
kmax
i − kmin

i

)
. We define

Π(k,∆i, k
cen
i ) ≡

H(k − (kcen
i −∆i/2))−H(k − (kcen

i + ∆i/2)),
(22)

where H(x) is a Heaviside step function, so Π(k, kcen
i ,∆i)

is equal to one if k is in the ith bin and zero otherwise.
Including the free parameters Ai which scale the amplitude
of the velocity power spectrum within each bin, the scaled

velocity power spectrum is given by10

PScaled
vv (k) ≡A1PFid

vv (k)Π(k,∆1, k
cen
1 )

+A2PFid
vv (k)Π(k,∆2, k

cen
2 )

...+ANPFid
vv (k)Π(k,∆N , k

cen
N ).

(23)

The free parameters Ai do not have any k-dependence, and
as a result one finds∫

dk

(2π)3
PScaled
vv (k)W (k, α12, r1, r2) =

N∑
i=1

Ai

∫ kceni +∆i/2

kceni −∆i/2

dk

(2π)3
PFid
vv (k)W (k, α12, r1, r2)

so the magnitude covariance matrix for the scaled velocity
power spectrum is given by

Cmij (A1, A2...AN ) =(
5

ln 10

)2(
1− (1 + zi)

2

H(zi)dL(zi)

)(
1− (1 + zj)

2

H(zj)dL(zj)

)
N∑
i=1

Ai

∫ kceni +∆i/2

kceni −∆i/2

dk

2π2
PFid
vv (k)W (k, α12, r1, r2).

From Eq. (19) and Eq. (20) we then have

P (A1,A2, ...AN |δm) = |2πΣ(A1, A2, ...AN )|−1/2

exp

(
−1

2
δmTΣ−1(A1, A2, ...AN )δm

)
.

(24)

The best-fitting values Ai can be used to check the con-
sistency with the fiducial model (Ai = 1) or to obtain the
effective measured power Pi in each bin:

Pi = Ai

∫ kceni +∆i/2

kceni −∆i/2

dk
Pvv(k)

∆i
. (25)

The Pi values can now be compared with the predictions
of the velocity power spectrum from different cosmological
models.

3.3.2 Scale-dependent growth rate

We can also relate the measured Ai values to the growth
rate of structure at each scale, as follows.

Here we will assume linear perturbation theory to be
valid for both the density and the velocity fields; the jus-
tification for this assumption will be given in Section 3.5.
In this regime the linear continuity equation is valid i.e.,
θ(k) = −fHδ(k). These assumptions are required to place
constraints on the growth rate, but not required for the
previous parametrisations. A shift in f(z)σ8(z) from the
fiducial value to a new value, viz., fσ8(z)Fid. → fσ8(z),
has an effect on the velocity divergence power spectrum
that can be calculated as Pθθ(k) → A1Pθθ(k), where A1 =

10 Note we have by definition

PFid
vv (k) = PFid

vv (k)Π(k,∆1, k
cen
1 ) + PFid

vv (k)Π(k,∆2, k
cen
2 )

...+ PFid
vv (k)Π(k,∆N , k

cen
N ).
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(
fσ8(z)/fσ8(z)Fid

)2
. One can then write down a ‘scaled’

velocity divergence power spectrum as

PScaled
θθ (k) ≡(
fσ8(z, kcen

1 )/fσ8(z)Fid
)2

PFid
θθ (k)Π(k,∆1, k

cen
1 )(

fσ8(z, kcen
2 )/fσ8(z)Fid

)2

PFid
θθ (k)Π(k,∆2, k

cen
1 )

...+
(
fσ8(z, kcen

N )/fσ8(z)Fid
)2

PFid
θθ (k)Π(k,∆N , k

cen
N ),

(26)

where again PScaled
vv (k) ≡ PScaled

θθ (k)/k2, and there are N
different bins that span the entire k range. The growth rate
is considered to be constant over the wavenumber range of
a given bin. The above relation Eq. (26) results from the
approximation Pvv(k, z) ∝ (σ8f(k, z))2.

The velocity power spectrum is calculated (at z = 0) by
assuming the standard ΛCDM expansion history and that
the growth of perturbations is governed by GR. We note
that modifying the expansion history and/or deviations from
GR at higher redshifts will affect the current growth rate.
Therefore in order to consistently examine the possibility
of a scale-dependence of the growth rate of structure (i.e.,
moving beyond a consistency test) such effects would need
to be taken into account. Such an approach is beyond the
scope of this paper and left for future work; here we simply
consider if the observed growth rate as a function of scale is
consistent with that expected within the framework of the
standard model.

3.4 Modelling of the velocity power spectrum

In this section we will outline the model we use for the veloc-
ity power spectrum in terms of the cosmological parameters.

We calculate the real-space velocity power spectrum us-
ing the code velMPTbreeze (an extension of MPTbreeze in
Crocce, Scoccimarro & Bernardeau (2012)), which computes
the velocity power spectrum using two loop multi-point
propagators (Bernardeau, Crocce & Scoccimarro 2008) in
a similar way to renomalized perturbation theory (RPT)
(Crocce & Scoccimarro 2006). velMPTbreeze uses an ef-
fective description of multi-point propagators introduced
in Crocce, Scoccimarro & Bernardeau (2012) which signifi-
cantly reduces computation time relative to other RPT im-
plementations. The results from velMPTbreeze were exten-
sively tested against N -body simulations (Crocce and Scoc-
cimarro, in prep).

3.5 Reducing non-linear systematics and
computation time

The velocity field is directly driven by the tidal gravita-
tional field∇Φ, where Φ is the gravitational potential, which
causes it to depart from the linear regime at larger scales
than the density field (Scoccimarro 2004). While the off-
diagonal elements of the covariance matrix Eq. (29) are
dominated by large-scale modes, as a result of the survey
geometry11, this is not the case for the diagonal (cosmic

11 This can be seen when plotting the window function

W (k) ≡
(∑N

j=1

∑N
i=1 W (k, αij , ri, rj)

)
/N2 of the survey (where

variance) elements where the small scale power contributes
to the intrinsic scatter. Hence non-linear effects are impor-
tant to consider and minimize.

In order to suppress non-linear contributions and hence
reduce potential systematic biases we adopt a simple
smoothing (gridding) procedure. Gridding the velocity field
significantly reduces the computation time by reducing the
size of the covariance matrix; this will be essential for next-
generation data sets given the computational demands of
the likelihood calculation (which requires a matrix inversion
for each likelihood evaluation).

The binning method we implement was developed and
tested in Abate et al. (2008). The grid geometry used is a
cube of length L, where the average apparent magnitude
fluctuation δm and error σδm are evaluated at the centre of
the ith grid cell ~xi:

δmi(~xi) =
1

Ni

∑
j

δmgal
j (~xj)Θij ,

σδm,i =
1

N
3/2
i

∑
j

σgal
δm,jΘij ,

(27)

whereNi is the number of galaxies located within the ith cell,
δmgal is the inferred fluctuation in apparent magnitude for
a specific galaxy and σgal

j is the error component as defined
in Eq. (18). The optimal choice for the gridding length scale
is evaluated using numerical simulations and is discussed in
Section 4. Both the observational error from the distance
indicators and the error introduced by the non-linear ve-
locity dispersion σv are being averaged. The sum over j is
taken over the entire sample, where Θij equals one when the
galaxy is within the grid cell and zero otherwise. The process
of smoothing the velocity field effectively damps the velocity
power spectrum, this acts to suppress non-linear contribu-
tions. The function describing this damping is given by the
Fourier transform of the kernel Θij , introduced in Eq. (27).
Letting Γ(k) ≡ F [Θij ] from above we have

Γ(k) =

〈
sinc

(
kx
L

2

)
sinc

(
ky
L

2

)
sinc

(
kz
L

2

)〉
~k∈k

. (28)

This allows one to calculate the velocity power spectrum
between separate grid points; therefore once the velocity
field has been smoothed we alter the theoretical prediction
of the velocity power spectrum by Pvv(k) → PGrid

vv (k) =
Pvv(k)Γ2(k). Now the covariance of δm between grid cen-
tres, C̃ij , is given by

C̃ij =

(
5

ln 10

)2(
1− (1 + zi)

2

H(zi)dL(zi)

)(
1− (1 + zj)

2

H(zj)dL(zj)

)
∫

dk

2π2
Pvv(k, a = 1)W (k, α12, r1, r2)Γ2(k).

(29)

Using numericalN -body simulations Abate et al. (2008)
explore the dependence of the recovered best-fitting param-
eters (σ8 and Ωm) on the smoothing length. Specifically they

W (k, αij , ri, rj) is defined in Eq. (4)) and N is the number of

galaxies in the survey. This window function only influences off-

diagonal elements of the covariance matrix. One finds that the
amplitude of W (k) significantly reduces as small-scales are ap-

proached, therefore less weight is attached to the power spectrum
on small scales.
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find that (relative to the statistical error) a smoothing scale
greater than 10h−1Mpc results in an unbiased estimation of
the cosmological parameters of interest.

In order to derive Eq. (29) one must presuppose the
PVs inside each cell are well-described as a continuous field.
However the velocities inside a grid cell represent discrete
samples from the PV field; therefore as the number density
inside each cell becomes small this approximation becomes
worse. In Abate et al. (2008) a solution to this ‘sampling
problem’ was proposed and tested using N -body simula-
tions. To mitigate the effects of this approximation one in-
terpolates between the case of a discrete sample and that
of the continuous field limit. The weight attached to each
is determined using the number of galaxies within each cell
Ni. The diagonal elements of the covariance matrix are now
updated as

C̃ii → C̃ii + (C̃ii − Cm
ii )/Ni, (30)

were Cm
ii is defined in Eq. (17). For this correction the con-

tinuous field approximation is assumed for the off-diagonal
elements12. It should be noted that one could simply write
the new gridded covariance matrix as

C̃ij =
1

NiNj

∑
k,l

Cm
k,lΘkiΘlj , (31)

thus avoiding the need to invoke the continuous field approx-
imation. This approach however requires one to calculate the
full covariance matrix (not the gridded covariance matrix).
In terms of the computational time of the likelihood algo-
rithm this approach (using Eq. (31)) offers no advantage;
therefore for this analysis we update our covariance matrix
using Eq. (30).

3.6 Effect of the unknown zero-point

The zero-point in a PV analysis is a reference magnitude,
or size in the case of Fundamental Plane surveys, for which
the velocity is known to be zero. From this reference point
one is able to infer the velocities of objects; without such
a reference point only the relative velocities could be de-
termined. An incorrectly calibrated zero point introduces a
monopole component to measured PVs. To give an example,
for supernovae the zero-point is determined by the absolute
magnitude M and the Hubble parameter H0.

When deriving PV measurements the zero-point is typi-
cally fixed at its maximum likelihood value found during the
calibration phase of the analysis; this allows the velocities
of all the objects in the sample to be determined. However,
this zero point may contain error. In this section we intro-
duce a method to analytically propagate the uncertainty in
the zero-point into the final cosmological result. An alterna-
tive to this approach would be to treat the zero-point as an
extra fitted ‘nuisance’ parameter; however when combining
multiple surveys with different zero-point offsets one needs
to consider each zero-point separately. Therefore this latter
approach would result in an increase in the dimension of the

12 This approach is valid given the off-diagonal elements of the

covariance matrix are significantly damped at small scales, and

hence the smoothing of the velocity field has only a small effect
on these elements.

parameter space being considered equal to the number of
surveys included.

We first consider the case of analysing a single velocity
survey. We define a as an offset in the magnitude fluctua-
tion; such that δm → δm + a. This indirectly represents a
perturbation to the velocity zero-point. Given we have some
prior knowledge of the distribution of this variable we give
it a Gaussian prior i.e.,

P (a|σa) =
1

(2π)1/2σa
exp[−a2/2σ2

a]. (32)

We define x as an N dimensional vector where each element
is set to one (i.e., (x)i = 1, for i = 1..N). Here N is the
dimension of δm. The parameter a alters the theoretical
prediction for the mean velocity, 〈δmp〉 = 0, to 〈δmp〉 = ax.
Now we can analytically marginalize over the unknown zero-
point (Bridle et al. 2002)

P (Σ|δm) =

∫
da P (Σ|δm, a)P (a|σa)

= |2πΣ|−1/2(1 + xTΣ−1xσ2
a)−1/2 exp

[
1

2
δmTΣ−1

M δm

]
,

(33)

where

Σ−1
M ≡ Σ−1 − Σ−1xxTΣ−1

xTΣ−1x + σ−2
a

. (34)

We may wish to combine a number of different PV surveys
with potentially different zero-point offsets. In this case it is
necessary to consider how one can marginalise over the inde-
pendent zero-points simultaneously. We consider the exam-
ple of two different PV surveys but note that this approach
can be readily generalised to a larger number of surveys
(Bridle et al. 2002).

Firstly we decompose the data vector into apparent
magnitude fluctuations from the first and second surveys,

~δm =

(
~δm

(1)

~δm
(2)

)
N

, (35)

where the first survey has n1 data points and the second
has n2, therefore the combined vector has length N = n1 +
n2. The data from the two surveys needs to be smoothed
onto two different grids, this is a simple modification to the
binning algorithm:

~δm =

(
1

N1,i

∑
j<n1

δmgal
j (~xj)Θij

1
N2,i

∑
n1<j<n2

δmgal
j (~xj)Θij

)
, (36)

where N1,i and N2,i are the number of galaxies inside the
ith cell from the first and second survey respectively.

We now introduce two free parameters (a, b) which will
allow the zero-point to vary for each survey, again both pa-
rameters are given Gaussian priors (i.e., are distributed ac-
cording to Eq. (32)). To account for a changing zero-point
we alter the theoretical prediction for the mean value of
the apparent magnitude fluctuations 〈δmp〉. This quantity
is normally set to zero as PVs are assumed to be distributed
according to a multivariate Gaussian with a mean of zero,
now we have 〈δmp〉 = ax1 + bx2 where x1

i = 1 if i ≤ n1 and
x1
i = 0 otherwise and x2

i = 1 if i ≥ n1 and x2
i = 0 otherwise.
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The updated likelihood is then

P (Σ|δm, a, b) =

|2πΣ|−1/2 exp

(
−1

2
(δm + 〈δmp〉)T

Σ−1 (δm + 〈δmp〉)
)
.

We desire a posterior distribution independent of the zero-
point corrections therefore we analytically marginalise over
these parameters

P (Σ|δm) =

∫
da

∫
db P (Σ|δm, a, b)P (a|σa)P (b|σb)

= |2πΣ|−1/2(1 + x1TΣ−1x1σ2
a)−1/2

(1 + x2TΣ−1x2σ2
b )−1/2 exp

[
1

2
δmTΣ−1

M δm

]
,

(37)

where

Σ−1
M ≡ Σ−1−Σ−1x1x1T

Σ−1

x1TΣ−1x1
−Σ−1x2x2T

Σ−1 + σ−2
a

x2TΣ−1x2 + σ−2
b

. (38)

Here we need to consider the variation to the determinant
as the covariance matrix is being varied at each likelihood
evaluation. For all zero-points here we choose a Gaussian
prior with a standard deviation of σa = σb = 0.2. We find
the choice of width of the prior has an insignificant effect on
the final results.

3.7 Combining multiple (correlated) velocity
surveys

Given the limited number count and sky coverage of ob-
jects in velocity surveys it is common for different surveys
to be combined in a joint analysis. In this situation indi-
vidual datasets may contain unrecognised systematic errors,
requiring them to be re-weighted in the likelihood analysis.

The first method we consider to do this is a recent up-
grade to the hyper-parameter analysis. The original hyper-
parameter method was developed to remove the inherent
subjectivity associated with selecting which data sets to
combine in an analysis and which to exclude (see Lahav
et al. 2000; Hobson, Bridle & Lahav 2002). This process is
achieved by including all the available data sets but allowing
free hyper-parameters to vary the relative ‘weight’ attached
to each data set, the hyper-parameters are then determined
in a Bayesian way. Consider two hypothetical surveys with
chi squared of χ2

A and χ2
B . The combined constraints are

typically found by minimising the quantity

χ2
com = χ2

A + χ2
B. (39)

This gives both data sets equal weight. Introducing the
hyper-parameters one has

χ2
com = αχ2

A + βχ2
B. (40)

The hyper-parameters can be interpreted as scaling the er-
rors for each data set, i.e., σi → σiα

−1/2, or equivalently
the covariance matrix of each data set Ci → α−1Ci. The
final values of the hyper-parameters, more accurately their
probability distributions P (α) and P (β), give an objective
way to determine if there are systematic effects present in
the data (e.g., a value α > 1 can be interpreted as reducing

the errors or correspondingly increasing the relative weight
of the data set).

The problem with the traditional hyper-parameter anal-
ysis for PV surveys is that it assumes that the individual
data sets are not correlated (this assumption is required to
write down equation Eq. (39) and Eq. (40)). If the sur-
veys cover overlapping volumes or are influenced by the
same large-scale modes this is not the case. Recently the
hyper-parameter formalism has been extended to a hyper-
parameter matrix method which includes the cross corre-
lations between surveys (Ma & Berndsen 2013). Here the
hyper-parameters scales both the covariance between ob-
jects in a given data set and the covariance between the
data sets:

CDiDj → (αiαj)
−1/2 CDiDj (41)

Di represents the ith data set, so CDiDj gives the covariance
between the ith and jth data sets. For simplicity here we
outline the case of two different data sets. In this case there
are two hyper-parameters (α1, α2) which we treat as free
parameters. The hyper-parameter matrix is defined as:

P =

(
α−1

1 (α1α2)−1/2

(α1α2)−1/2 α−1
2

)
. (42)

The final likelihood function is

P (δm|~θ, ~α) =[
2∏
i=1

(αi
2π

)ni/2
]

1√
|C|

exp

(
−1

2
δmT

(
P̂ � C−1

)
δm

)
.

Here � is an ‘element-wise’ product (or, Hadamard product)
defined as (P̂ �C−1)ij = P̂ij × (C−1)ij . P̂ is the Hadamard
inverse of the ‘hyper-parameter’ matrix (i.e. P̂ij = P−1

ij ),
and n1 and n2 are the number of data points in the first
and second surveys respectively.

As described in Section 3.2.2 a free parameter σv is typ-
ically introduced to account for non-linear random motion.
One issue with the likelihood function defined above is that
σv and the hyper-parameters are quite degenerate. There-
fore for our hyper-parameter analysis we fix σv at the values
found when analysing the surveys independently.

4 TESTING WITH SIMULATIONS

We require simulations of PV catalogues for several aspects
of this analysis: to determine if non-linear effects from the
growth rate of structure or redshift-space distortions cause
systematic errors, to determine the approximate survey ge-
ometry and distance errors for which the non-Gaussian ob-
servational scatter of PVs becomes important, finally to in-
vestigate the effect (on the final constraints) of marginalising
over the zero-point uncertainty. Note the construction of the
Mock catalogues used in this section is outlined in Section
2.

All the cosmological parameters not allowed to vary
freely here are set to those input into the simula-
tion (i.e., ΩΛ = 0.727,Ωm = 0.273,Ωk = 0, H0 =
100h km s−1Mpc−1, σ8 = 0.812, ns = 0.960). For the veloc-
ity power spectrum fits we use a smoothing scale (defined in
Section 3.5) of 10h−1Mpc, while for the analysis of Ωm and
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6dFGSv: Velocity power spectrum analysis 13

σ8 we adopt a length of 20h−1Mpc. We use a larger grid size
for the analysis of Ωm and σ8 because the evaluation of the
likelihood (i.e., Eq. 21) is more computationally demand-
ing relative to the evaluation of of the likelihood given in
Eq. (24), the larger grid size reduces the computational re-
quirements13. We first shift the haloes within the simulation
to their redshift-space position, using xs = xr+v(x, t)·r̂/H0.
Now we transform the PVs within the simulation to appar-
ent magnitude fluctuations, δm.

At small scales the predictions from RPT become less
accurate and are known to break down (experience expo-
nential damping relative to the expectations from N -body
simulations) at k ∼ 0.15hMpc−1 for the velocity power spec-
trum evaluated assuming the fiducial cosmology of the sim-
ulation at a redshift of zero. We therefore truncate the ve-
locity power spectrum fits at this scale. We note that this
scale varies for different cosmological parameters, therefore
for the (Ωm, σ8) fits we test a range of values, kmax, for trun-
cating the integral when calculating the covariance matrix,
to decide the optimal choice for the data.

Now using 8 different observers from mock set (I) we
test the ability of each parametrisation to recover the input
cosmology, under the conditions outlined above. Recall for
mock set (I) the input distance error is σd ∼ 5%, the ap-
proximate distance error for SNe. The derived constraints
on (Ωm, σ8) for various values of kmax are given in Fig. 5;
the black square symbols here give the input cosmology of
the simulation. The velocity power spectrum measurements
are given in Fig. 6 and the constraints for a scale-dependent
growth rate, fσ8(z = 0, k), are given in Fig. 7. The thick
blue lines in Fig. 6 give the predictions for the average power
within the defined bin ranges for the fiducial cosmology,
this is calculated using Eq. (25) with Ai = 1. In addition
to giving the results for a single mock realisation we also
average the results found for 8 different mock realisations
in order to provide a more accurate systematic test. Again
some care needs to be taken when interpreting the combined
constraints given that on the largest scales the mock reali-
sations are significantly correlated. This is most pronounced
for the largest-scale bin in Fig. 6 and Fig. 7, for which we in-
terpret the consistently ‘high’ measurement power as being
produced by correlations. Also note the mock simulations
considered here have significantly greater statistical power
than current PV surveys, so we are performing a sensitive
systematic check. We find that at the investigated error lev-
els we are able to accurately recover the input cosmology of
the simulation for all parametrisations considered. We con-
clude therefore that the bias from non-linear structure is
currently insignificant, the linear relation between the PV
and δm is valid and non-linear RSD effects do not bias our
final constraints.

Following Fig. 6 we conservatively fix kmax =
0.15hMpc−1 for the (Ωm, σ8) fits, given that on smaller
scales we observe a slight trend away from the fiducial cos-
mology (yet still consistent at the 2σ level). For the power
spectrum fits we note a small amount of correlation exists

13 This is the case because for each Ωm and σ8 posterior evalu-

ation we are required to re-calculate the entire covariance matrix
(Eq. 29). This is not the case for the other parametrisations con-
sidered here.

Figure 4. Correlation coefficents r between the amplitude pa-
rameters Ai, and the non-linear velocity dispersion σv. The re-

sults here were calculated using an MCMC chain (of length∼ 106)

produced when analysing a single realisation from Mock set (I).
We expect very similar correlations to exist between the growth

rate measurements and note that the correlations between the

different bins are quite weak.

between the different wavenumber bins. We give a typical
example of the correlation coefficients between the bins in
Fig. 4, determined using the Monte Carlo Markov Chain.

When testing the effect of non-Gaussian observational
error for PVs, both the sky coverage of the survey and the
distance error are relevant, therefore we consider both mock
set (I) and (II). We find that for mock set (I) using the
velocity not magnitude as the variable in the analysis re-
sults in no significant bias. This continues to be true even
when we limit the survey to one hemisphere. This can be un-
derstood because the degree of departure from Gaussianity
of the probability distribution of peculiar velocities, P (v),
is dependent on the magnitude of the distance error. With
relatively small distance errors, P(v) is described well by a
Gaussian distribution.

In the case of a distance and sky distribution corre-
sponding to 6dFGSv, that is, σd ∼ 30% and only consider-
ing one hemisphere (i.e., mock set (II)) we find a significant
bias is introduced when using PVs14. We use 8 realisations
from mock set (II), generate realistic observational errors
and perform the likelihood analysis twice using either PV
or δm as the variable. For the likelihood analysis using PV
one is required to input a single velocity value, which gives
us some freedom in how we choose to compress the distri-
bution P (v) into a single value. Here we consider the mean,
maximum likelihood (ML) and median. For a detailed in-
vestigation into the effect of these choices, in the context of
bulk flow measurements, see Scrimgeour et. al (in prep). In
all prior PV analysis when the full probability distribution
of the distance measure (e.g., the absolute magnitude, M ,
in the case of the Tully–Fisher relation) was not available

14 This also applies for future analyses; a number of Fundamental

Plane and Tully-Fisher surveys are forthcoming and will have
similar properties.
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Figure 5. 68% confidence regions for the matter density, Ωm, and the RMS clustering in 8h−1Mpc spheres, σ8, using mock set (I),
including RSD and using the δm variable. The transparent contours (dashed outline) give the constraints from some example single

survey realisations. The opaque contours (solid outline) give the combined constraints from 8 realisations. For the combined constraints

we give 68% and 95% confidence regions. A smoothing length of 20h−1Mpc is used for all constraints. For each plot we vary the length
scale, kmax at which we truncate the integral for the calculation of the covariance matrix, that is the integral given in Eq. (29) (i.e., the

smallest scales included in the analysis). Varying this scale allows us to test the validity of the constraints as we move into the non-linear

regime. From left to right the wavenumbers at which we cut off the integration are kmax = [0.1, 0.15, 0.175, 0.20]hMpc−1. The black
square symbols give the cosmology input into the simulation.
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Figure 6. 68% confidence intervals for the amplitude parameters Ai describing the mean ‘power’ within each bin using mock set (I).

The thick blue (horizontal) lines give the mean power in each bin for the fiducial cosmology calculated using Eq. (25). Here we include
RSDs, use δm and a smoothing length of 10h−1Mpc. The blue points are the constraints found for individual mock realisations, while the

red points show the constraints found by combining the results from 8 different mocks. Consistency with the assumed fiducial cosmology
occurs when the given confidence levels overlap with the mean power; the specific position of the point along the bin length is arbitrary.

The green dashed line shows the velocity power spectrum calculated assuming the fiducial cosmology. Section 5.3 gives the wavenumber
bin intervals used here, with the exception that kmin = 0.0065hMpc−1.

the PV was calculated directly from this variable. The Ja-
cobian term is ignored in this case, we label this method the
‘direct approach’. To give an example; for the Fundamental
Plane relation using this direct method one would determine
the ML value of x ≡ log10(Dobs./Dphy.) then using this value
calculate the corresponding PV, again ignoring the Jacobian
term given in Eq. (8).

We give the constraints for the amplitude of the velocity
power spectrum and the cosmological parameters σ8 and
Ωm, found when using the magnitude fluctuation δm, in Fig.
8. For the fits of σ8 and Ωm we also use the mean of P (v) and
the direct method; while for the velocity power spectrum
fits we use the median of P (v) (viz, vi = Median[P (vi)]).
Here we have combined the constraints from different mock
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Figure 7. 68% confidence intervals for the normalised scale-dependent growth rate f(z = 0, k)σ8(z = 0) in 5 different bins in Fourier

space. The thick black line gives the prediction of the input cosmology. For each k-bin we plot the results from 6 different realizations

from mock set (I). We include RSDs in the mocks, use the variable δm, and choose a smoothing length of 10h−1Mpc. The specific k
values within a given bin for the measurements are arbitrary. The bin intervals used here are given in Section 5.3, with the one correction

that kmin = 0.0065h−1Mpc, corresponding to the size of the simulation.
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Figure 8. (Left) 68% confidence intervals for the velocity power spectrum amplitude in three Fourier bins. We consider five separate

realisations taken from mock set (II). The small blue points show the individual constraints found using the variable δm, while the small

red points show the constrains found using the median of the velocity distributions (viz, vi = Median[P (vi)]) (this gives very similar
results to the direct method). The larger blue and red points show the results from combining the five realisations. The circle symbols (left

panel) give the median value of the probability distributions. (Right) Constraints on the parameters Ωm and σ8 found from combining
the results from 8 different realisations with mock set (II). The contours give 68% and 95% confidence levels. The blue contour shows the
result of using the variable δm. The red and green contours show the result of using the PV as the main variable, where the red contour

gives the result from directly calculating the PV from the observable quantity ignoring the Jacobian term, and the green contour gives

the constraints from using the mean value of P (v).

realisations. Note for the separate fits using δm and the
PV we have used the same mock realisations. We interpret
the slight offset from the fiducial model (still within 1σ) of
the constraints found using δm as simply a result of cosmic
variance and covariance between mock realisation.

We conclude that for the constraints on σ8 and Ωm us-
ing the mean, median and ML of P (v) and the direct method

in the likelihood analysis all introduce a significant bias (i.e.,
> 2σ) in the final cosmological parameter values when con-
sidering a radial and angular halo distribution similar to
6dFGSv (and averaging over 8 realisation). We find a sim-
ilar, yet less significant (i.e., > 1σ), bias for the velocity
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power spectrum15. As shown in the left panel of Fig. 8, the
result is more power relative to the fiducial cosmology on
the largest scales, which is consistent with a low bias in Ωm.
The non-Gaussian distributions imprint a bias in the mean
radial velocity and therefore influence power on the largest
scale. Once a full sky survey is considered this effect is less
severe as the bias tends to averages out.

We test the sensitivity of the final constraints to the
process of marginalising over the zero-point. We find that
the final results are reasonably insensitive to this proce-
dure. As expected, the error in measurements on the largest
scales is increased, which slightly weakens the constraints in
the largest scale bin for the growth rate and velocity power
spectrum measurements, and equivalently weakens the con-
straints on the matter density Ωm.

5 PARAMETER FITS TO VELOCITY DATA
SETS

In this section we present the results from the analysis of the
6dFGSv and low-z SNe peculiar velocity surveys. Analysing
the fluctuations in the measured PVs and their correlations
(as a function of their spatial separation) we are able to
derive constraints on the following: the cosmological param-
eters Ωm and σ8 (Section 5.2); the amplitude of the velocity
power spectrum, Pvv(k) ≡ Pθθ(k)/k2 in a series of (five)
∆k ∼ 0.03hMpc−1 bins (Section 5.3); the scale-dependent
normalized growth rate of structure, fσ8(z = 0, k), in a se-
ries of (five) ∆k ∼ 0.03hMpc−1 bins (Section 5.4); and the
scale-independent growth rate of structure, fσ8(z = 0) (Sec-
tion 5.4). All the constraints given are at a redshift z ∼ 0.
We emphasize that, because we have not included any in-
formation from the local density field, as inferred by the
local distribution of galaxies, the results presented here do
not rely on any assumptions about galaxy bias. Addition-
ally, here we are working solely within the standard ΛCDM
model.

For sections 5.2, 5.3, 5.4 we give the results derived
when analysing the individual surveys separately. Compar-
ing the results from different PV surveys allows one to check
for systematic effects. When combining the PV surveys we
consider two different approaches; both introduce extra de-
grees of freedom that allow the relative ‘weight’ of each sam-
ple to vary in the likelihood calculation. Firstly, we introduce
a free parameter σv to each survey, this term accounts for
non-linear velocity dispersion. Secondly, we allow the rela-
tive weight of each survey to be varied by the use of an ma-
trix hyper-parameter method (introduced in Section 3.7). In
this case we fix the σv values of both surveys to the max-
imum likelihood values found when analysing the surveys
separately. The purpose of the hyper-parameter analysis is
to check the statistical robustness of our constraints. In the
case that the hyper-parameter analysis is statistically con-
sistent with the standard method of combining the surveys
we quote the results from the standard method as our final
measurement. The two PV samples we use for this analysis
have significant overlap, therefore we expect the individual
results to be highly correlated, given they share the same

15 Given we average over a smaller number of realisations.

cosmic variance. This limits the benefits from combining the
samples. In addition complications arise when data points
from each survey are placed on the same grid point, as oc-
curs when the velocity surveys are separately smoothed onto
grids16.

For all likelihood calculations in the following sec-
tions we marginalise over the unknown zero-point17 (i.e.,
a monopole contribution to the velocity field). The result of
this process is that our constraints are not sensitive to the
uncertainties present in the determination of the zeropoint
in PV surveys and the assumptions required to determine
the zeropoint.

5.1 MCMC sampling strategy

To sample the posterior distributions we use a python
implementation of the affine-invariant ensemble sampler
for Markov Chain Monte Carlo (MCMC) MCMC-hammer

(Foreman-Mackey et al. 2013). This technique was in-
troduced by Goodman & Weare (2010). We use the
MCMC-hammer algorithm because, relative to the standard
Metropolis–Hastings (M–H) algorithm the integrated auto-
correlation time is lower and less ‘tuning’ is required; specif-
ically, only two parameters are required to tune the per-
formance of the Markov chain, as opposed to N [N + 1]/2
parameters in M–H, where N is the dimension of the pa-
rameter space. Additionally the MCMC-hammer algorithm is
trivially parallelized using MPI and the affine invariance (in-
variance under linear transformations) property of this al-
gorithm means it is independent of covariances between pa-
rameters18 (Foreman-Mackey et al. 2013).

We discard the first 20% of each chain as ‘burn in’ given
that the sampling may be non-Markovian, while the conver-
gence of each chain is assessed using the integrated autocor-
relation time. From the samples we generate an estimate of
the posterior maximum-likelihood (ML) and median; given
the posterior distributions of the parameters tend to be non-
Gaussian, the 68% confidence intervals we quote are found
by calculating the 34% limits about the estimated median.
In the case where we cannot quote a robust lower bound,
when the probability distribution peaks near zero, we quote
95% upper limits.

5.2 Matter density and clustering amplitude

The base set of parameters we allow to vary in this analysis
is [Ωm, σ8, σv]. In the case where we combine PV surveys we
consider two extensions to this base set. Firstly, we include
a free parameter modelling the non-linear velocity disper-
sion σv for each survey and therefore consider the set of
parameters [Ωm, σ8, σv,1, σv,2]. Secondly, we fix the values
for the velocity dispersion and introduce hyper-parameters,
this gives the set [Ωm, σ8, α6dF, αSNe].

For each likelihood evaluation of the cosmological pa-
rameters we must compute the corresponding velocity power

16 We treat these data points as if they were perfectly correlated
in the full covariance matrix.
17 We allow each survey to have different zero-point offsets for
the marginalisation.
18 No internal orthogonalisation of parameters is required.
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spectrum. While the calculation of the velocity power spec-
trum in velMPTbreeze in significantly faster than previous
RPT calculations, it remains to slow to embed directly in
MCMC calculations. Therefore the approach we take here
is to pre-compute a grid of velocity power spectra then use
a bilinear interpolation between the grid points to estimate
the power spectra.

Using velMPTbreeze we evaluate a grid of velocity
power spectra; we use the range Ωm = [0.050, 0.500] and
σ8 = [0.432, 1.20], which act as our priors. We use step
sizes of ∆Ωm = 0.01 and ∆σ8 = 0.032. We do not inves-
tigate the region of parameter space where Ωm < 0.05 as
here the theoretical modelling of the velocity power spec-
trum becomes uncertain as it becomes highly non-linear on
very large scales. The prior placed on all σv parameters is
σv=[0, 1000]km s−1 and αi = [0, 10]. For each value of Ωm

the matter transfer function needs to be supplied, to do
this we use the CAMB software package Lewis, Challinor &
Lasenby (2000). The numerical integration over the veloc-
ity power spectrum requires us to specify a k-range. Here
we integrate over the range k = [0.0005, 0.15]hMpc−1. We
note that integrating to larger scales (i.e. smaller values of
k) when computing the full covariance matrix has a negli-
gible effect on the derived constraints. Additionally, for the
constraints given in this section we smooth the local velocity
field with a gridding scale of 20h−1Mpc.

The constraints for the parameters are shown in Fig.
9 and the best-fit values and 68% confidence regions are
given in Table 1. Using only the 6dFGSv sample we de-
termine Ωm = 0.136+0.07

−0.04 and σ8 = 0.69+0.18
−0.14, and for the

SNe velocity sample we determine Ωm = 0.233+0.134
−0.09 and

σ8 = 0.86 ± 0.18. The results show that the two PV sam-
ples are consistent with each other and given the size of the
errors we do not find a strong statistical tension (less than
2σ) with the parameter values reported by Planck. Com-
bining the two PV surveys we determine Ωm = 0.166+0.11

−0.06

and σ8 = 0.74 ± 0.16; similarly we find no strong statis-
tical tension with Planck. For the matrix hyper parameter
analysis we find α6dF = 1.23 ± 0.05, αSNe = 0.87 ± 0.08,
Ωm = 0.228+0.12

−0.08 and σ8 = 0.96+0.14
−0.16; although the con-

straints from the hyper-parameters are best fit with the
slightly higher σ8 value, we find the results from the hyper-
parameter analysis are statically consistent with the previ-
ous constraints, as shown in Fig. 9.

The constraints on Ωm and σ8 outlined in this section,
while not competitive in terms of statistical uncertainty to
other cosmological probes, do offer some insight. In contrast
to most methods to determine the matter density, Ωm, con-
straints from PV do not result from determining properties
of the global statistically homogeneous universe (geomet-
ric probes); the constraints arise from the dependence of
the clustering properties of dark matter on Ωm. The consis-
tency between these probes is an strong test of the fiducial
cosmology.

5.3 Velocity power spectrum

Analysing the surveys individually we consider the base
parameter set [A1(k1), A2(k2), A3(k3), A4(k4), A5(k5), σv].
Each Ai parameter (defined in Eq. (23)) acts to scale the
amplitude of the velocity power spectrum, Pvv(k), over a
specified wavenumber range given by k1 ≡ [0.005, 0.02],

k2 ≡ [0.02, 0.05], k3 ≡ [0.05, 0.08], k4 ≡ [0.08, 0.12]
and k5 ≡ [0.12, 0.150]. When combining samples we con-
sider the parameter sets [A1, A2, A3, A4, A5, σv,1, σv,2] and
[A1, A2, A3, A4, A5, α6dF, αSNe]. We use a flat prior on the
amplitude parameters, Ai = [0, 100], and the hyper-
parameters αi = [0, 10].

The constraints for the amplitude of the velocity power
spectrum are shown in Fig. 10 and the best-fit values and
68% confidence regions are given in Table 2. The deviation
between the ML values and median values (as shown in Ta-
ble 2) is caused by the skewness of the distributions and
the physical requirement that Ai > 0. This requirement re-
sults in a cut-off to the probability distribution that becomes
more significant as the size of the errors increases. There-
fore we caution that compressing the distributions, P (Ai)
requires subjective choices; note this is not the case for the
growth rate constraints as shown in the next section. The
fiducial power in each Fourier bin is consistent with that
expected in our fiducial cosmological model assuming the
best-fitting Planck parameters.

5.4 Scale-dependent growth rate

We consider the results outlined in this section the most
significant component of this work. We present the first
measurement of a scale-dependent growth rate which in-
cludes the largest-scale growth rate measurement to date
(viz., length scales greater than 300h−1Mpc). Additionally,
we present a redshift zero measurement of the growth rate
that is independent of galaxy bias and accurate to ∼ 15%.
Comparing this result to that obtained from the RSD mea-
surement of 6dFGS (i.e., Beutler et al. 2012) allows one to
test the systematic influence of galaxy bias, a significant
source of potential systematic error in RSD analysis.

Analysing the surveys individually we consider two pa-
rameter sets: firstly we determine the growth rate in the
scale-dependent bins defined above constraining the param-
eter set [fσ8(ki), σv] (i = 1..5); secondly we fit for a single
growth rate measurement [fσ8(z = 0), σv]. When combining
data sets we consider the extensions to the base parame-
ter set +[σv,1, σv,1], and +[α6dF, αSNe] and use a smoothing
length of 10h−1Mpc. We fix the shape of the fiducial velocity
power spectrum Ωm to the Planck value. By separating the
power spectrum into wavenumber bins we expect that our fi-
nal constraints are relatively insensitive to our choice of Ωm.
Varying Ωm generates a k-dependent variation in the power
spectrum over very large scale; considering small intervals of
the power spectrum this k-dependence is insignificant and
to first order the correction to a variation in Ωm is simply a
change in amplitude of the power spectrum, which we allow
to vary in our analysis.

We first consider the scale-dependent constraints which
are shown in Fig. 11; with the best-fit and 68% confidence
internals given in Table 3 and the full probability distri-
butions in Fig. 14. For 6dFGSv we determine: fσ8(ki) =
[0.72+0.17

−0.23, 0.38+0.17
−0.20, 0.43+0.20

−0.20, 0.55+0.22
−0.23, 0.52+0.25

−0.22].
For the SNe velocity sample we have: fσ8(ki) =
[0.70+0.29

−0.22, 0.42+0.23
−0.19, 0.45+0.24

−0.20, 0.51+0.29
−0.23, 0.74+0.41

−0.33]. As
shown in Table 3 the constraints on σv from 6dFGSv are
very weak relative to the constraints from the SNe sample.
The reason the σv parameter is much lower (and has a
larger uncertainty) for the 6dFGSv sample relative to the
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Figure 9. 68 % confidence intervals for the matter density Ωm, σ8 and the non-linear velocity dispersion σv. Results are shown for 6dFGSv
(blue), the SN sample (green), the combined analysis (red) and the combined hyper-parameter analysis (black). The σv constraints from

the combined analysis are very similar to the individual constraints hence we do not add them here.

Table 1. Derived cosmological parameter values for Ωm and σ8 plus the derived value for the non-linear velocity dispersion σv and the

hyper-parameters α6dF and αSNe. Parameters not allowed to vary are fixed at their Planck ML values. Columns 2 and 3 give results from
the 6dFGSv survey data alone. Columns 4 and 5 give results from the SNe sample data alone. For columns 6 and 7 we give the results

combining both surveys; and for columns 8 and 9 we give the results combining both surveys using a matrix hyper-parameter analysis.

Note the hyper-parameters are only given for columns 8 and 9 as they are not included in the other analysis. All varied parameters are
given flat priors.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGSv + SNe (Hyp)

Parameter ML ML Median ML Median ML Median
[68 % limits ] [68 % limits] [68 % limits ] [68 % limits]

Ωm 0.103 0.136+0.07
−0.04 0.169 0.233+0.134

−0.09 0.107 0.166+0.11
−0.06 0.183 0.228+0.12

−0.08

σ8 0.66 0.69+0.18
−0.14 0.89 0.86± 0.18 0.73 0.74± 0.16 1.06 0.96+0.14

−0.16

σv 32.7 114+245 388 395+54
−58 – – – –

α6dF – – – – – – 1.22 1.23± 0.05

αSNe – – – – – – 0.86 0.87± 0.08

SNe sample is that the gridding has a stronger effect for
the 6dFGSv sample given the higher number density. This
significantly reduces the contribution of non-linear velocity
dispersion to the likelihood and hence increases the final
uncertainty. In addition we expect the magnitude of σv to
be dependent on the mass of the dark matter halo that the
galaxy resides in. Therefore given separate PV surveys use
galaxies that likely occupy different mass haloes, we do not
expect the results for σv to be consistent between surveys.

The results (again) show that the two survey are con-
sistent with each other, viz., they are within one standard
deviation of each other for all growth rate measurements. We

detect no significant fluctuations from a scale-independent
growth rate as predicted by the standard ΛCDM cosmolog-
ical model. Although the power in the largest-scale Fourier
bin is high, it is consistent with statistical fluctuations.
When combining both the 6dFGSv sample and the SNe
velocity sample we find (no hyper-parameters): fσ8(ki) =
[0.79+0.21

−0.25, 0.30+0.14
−0.19, 0.32+0.19

−0.15, 0.64+0.17
−0.16, 0.48+0.22

−0.21]. We find
no significant departure from the predictions of the standard
model.

We next fit for a scale-independent growth rate by scal-
ing the fiducial power spectrum across the full wavenum-
ber range. The measurements of a scale-independent growth
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Figure 10. 68% confidence intervals for the amplitude parameters Ai scaled by the mean power within each bin for the 6dFGSv data,

SNe data and the combined constraint. The thick blue lines give the mean power in each bin in the fiducial cosmology calculated using
Eq. (25). The black dashed line shows the velocity power spectrum Pvv(k) calculated assuming the Planck cosmology. The circle symbols

here give the median of the posterior distribution.

Table 2. Constraints on the velocity power spectrum amplitude parameters Ai plus the value of the non-linear velocity dispersion σv

and the hyper-parameters α6dF and αSNe. Parameters not allowed to vary are fixed at their Planck ML values. Columns 2 and 3 give
results from the 6dFGSv survey data alone. Columns 4 and 5 give results from the SNe sample data alone. For columns 6 and 7 we give

the results combining both surveys; and for columns 8 and 9 we give the results combining both surveys using a matrix hyper-parameter

analysis. All varied parameters are given flat priors.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGS + SNe (Hyp)

Parameter ML Median ML Median ML Median ML Median

[68 % limits ] [68 % limits ] [68 % limits ] [68 % limits ]

A1(k1) 1.98 2.64+2.15
−1.18 1.62 2.50+2.80

−1.40 2.43 3.20+2.62
−1.60 2.22 3.17+2.64

−1.65

A2(k2) 0.20 0.74+1.08
−0.55 0.25 0.89+1.43

−0.67 0.14 0.44+0.84
−0.34 0.26 0.65+1.13

−0.49

A3(k3) 0.20 0.94+1.20
−0.70 0.57 1.0+1.55

−0.73 0.13 0.50+0.86
−0.38 0.27 0.63+0.96

−0.48

A4(k4) 0.27 1.51+1.61
−1.06 0.43 1.34+2.14

−0.99 1.52 2.07+1.37
−0.98 1.89 2.26+1.43

−0.99

A5(k5) 0.30 1.36+1.84
−0.98 0.84 2.79+4.49

−2.03 0.38 1.17+1.48
−0.86 0.40 1.39+1.86

−1.00

σv 98.4 137.5+110
−91 372.8 365.2+43

−45 – – – –

α6dF – – – – – 1.198 1.189± 0.034

αSNe – – – – – – 0.940 0.980+0.104
−0.091

rate of structure are given in Fig. 12. Here we also com-
pare with previously published results from RSD measure-
ments and the predictions from the assumed fiducial cos-
mology. The best-fit values and 68% confidence intervals
are given at the bottom of Table 3. We also plot the
full probability distributions in Fig. 13, in addition to the
results from the hyper-parameter analysis. For 6dFGSv,
the SNe velocity sample and 6dFGSv+ SNe (with no
hyper-parameters) we determine, respectively, fσ8(z) =
[0.428+0.079

−0.068, 0.417+0.097
−0.084, 0.418 ± 0.065]. The measurements

of the growth rate all show consistency with the predic-
tions from the fiducial model as determined by Planck.
Specifically, the best fitting Planck parameters predict
fσ8(z = 0) = 0.443. In addition we find consistency with

the measurement of the growth rate of structure from the
RSD analysis of the 6dFGSv survey (see Fig. 12) (Beutler
et al. 2012).

For the hyper-parameter analysis the results for the
scale-dependent and scale-independent measurements are
indistinguishable. We determine α6dF = 1.189 ± 0.034 and
αSNe = 0.980+0.104

−0.091; the results for both analysis have been
included in Fig. 11 and Fig. 12. We find that, while there
is a slight shift in the best-fit values, the hyper-parameter
analysis gives results statistically consistent with the previ-
ous results; for the scale-independent measurements this is
best shown in Fig. 13.
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Figure 11. 68% confidence intervals for the normalized scale-dependent growth rate f(z = 0, k)σ(z = 0) in 5 different bins in Fourier

space. The thick black line is the prediction found assuming the fiducial Planck cosmology. For each k-bin we plot the results from
6dFGSv, the SNe sample and the combined constraint. The bin intervals used here are given in Section 5.3. The largest scale bin

corresponds to length scales > 300h−1Mpc. The circle symbols give the ML of the posterior distribution.
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Figure 12. 68% confidence intervals for the normalized growth rate f(z = 0)σ(z = 0) averaging over all scales.The solid black line gives
the theoretical prediction for fσ8(z) assuming the Planck cosmology and the dashed-black line gives the prediction assuming the WMAP

cosmology. The redshift separation of the PV measurements (coloured points) is simply to avoid overlapping data points; the redshift of
the green data point gives the redshift of all the points. We compare our PV measurements to previous constraints from redshift-space

distortion measurements from the 6dFGS, 2dFGRS, GAMA, WiggleZ, SDSS LRG, BOSS CMASS and VIPERS surveys given by the

black points (Beutler et al. 2012; Hawkins et al. 2003; Blake et al. 2011a, 2013; Samushia et al. 2013; de la Torre et al. 2013).

6 DISCUSSION AND CONCLUSIONS

We have constructed 2-point statistics of the velocity field
and tested the ΛCDM cosmology by using low-redshift
6dFGSv and Type-Ia supernovae data. We summarise our
results as follows:

• We introduced and tested a new method to constrain
the scale-dependence of the normalized growth rate using

only peculiar velocity data. Using this method we present
the largest-scale constraint on the growth rate of struc-
ture to date. For length scales greater than ∼ 300h−1Mpc
(k < 0.02hMpc−1) we constrain the growth rate to ∼ 30%.
Specifically, we find for 6dFGSv, which provides our best
constraints, fσ8(k < 0.02hMpc−1) = 0.72+0.17

−0.23. This result
is consistent with the standard model, albeit higher than
expected.
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Table 3. Constraints on the growth rate as a function of scale and independent of scale (final row) plus the value of the non-linear
velocity dispersion σv and the hyper-parameters α6dF and αSNe. Columns 2 and 3 give results from the 6dFGSv survey data alone.

Columns 4 and 5 give results from the SNe sample data alone. For columns 6 and 7 we give the results combining both surveys; and for

columns 8 and 9 we give the results combining both surveys using a matrix hyper-parameter analysis.

6dFGSv SNe 6dFGSv + SNe (Norm) 6dFGS + SNe (Hyp)

Parameter ML Median ML Median ML Median ML Median

[68 % limits ] [68 % limits ] [68 % limits ] [68 % limits ]

fσ8(k1) 0.68 0.72+0.17
−0.23 0.63 0.70+0.29

−0.22 0.76 0.79+0.21
−0.25 0.79 0.80+0.23

−0.25

fσ8(k2) 0.39 0.38+0.17
−0.20 0.34 0.42+0.23

−0.19 0.21 0.30+0.14
−0.19 0.31 0.36+0.17

−0.21

fσ8(k3) 0.44 0.43+0.20
−0.20 0.38 0.45+0.24

−0.20 0.260 0.32+0.19
−0.15 0.38 0.35+0.17

−0.19

fσ8(k4) 0.57 0.55+0.22
−0.23 0.52 0.51+0.29

−0.23 0.69 0.64+0.17
−0.16 0.66 0.66+0.17

−0.19

fσ8(k5) 0.49 0.52+0.25
−0.22 0.67 0.74+0.41

−0.33 0.49 0.48+0.22
−0.21 0.53 0.52+0.15

−0.17

σv 98.4 137.5+110
−91 372.8 365.2+43

−45 – – 98.4 372.8

α6dF – – – – – – 1.198 1.189± 0.034

αSNe – – – – – – 0.940 0.980+0.104
−0.091

fσ8(z = 0) 0.424 0.428+0.079
−0.068 0.432 0.417+0.097

−0.084 0.429 0.418± 0.065 0.492 0.496+0.044
−0.108
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Figure 13. Posterior distributions for the (scale averaged)
growth rate of structure fσ8(z = 0) for 6dFGSv (blue), SNe

(green), combining samples (red) and for the hyper-parameter

analysis (black). The posterior distributions are also given for the
hyper-parameters α6dF and αSNe. The prediction for the growth

rate of structure assuming a fiducial Planck cosmology is given
by the solid black line.

• Examining the scale-dependence of the growth rate of
structure at z = 0 we find the constraints fσ8(ki) =
[0.79+0.21

−0.25, 0.30+0.14
−0.19, 0.32+0.19

−0.15, 0.64+0.17
−0.16, 0.48+0.22

−0.21] using the
wavenumber ranges k1 ≡ [0.005, 0.02], k2 ≡ [0.02, 0.05],
k3 ≡ [0.05, 0.08], k4 ≡ [0.08, 0.12] and k5 ≡ [0.12, 0.150].
We find no evidence for a scale-dependence in the growth

rate, which is consistent with the standard model. All the
growth rate measurements are consistent with the fiducial
Planck cosmology.

• Averaging over all scales we measure the growth rate to
∼ 15% which is independent of galaxy bias. This result
fσ8(z = 0) = 0.418 ± 0.065 is consistent with the redshift-
space distortion analysis of 6dFGS which produced a mea-
surement of fσ8(z) = 0.423 ± 0.055 (Beutler et al. 2012),
increasing our confidence in the modelling of galaxy bias. In
addition this measurement is consistent with the constraint
given by Hudson & Turnbull (2012) of fσ8 = 0.400 ± 0.07,
found by comparing the local velocity and density fields.
In contrast to our constraint this measurement is sensitive
to galaxy bias and any systematic errors introduced during
velocity field reconstruction.

• We also consider various other methods to constrain the
standard model. We directly constrain the amplitude of the
velocity power spectrum Pvv(k) ≡ Pθθ(k)/k2 for the same
scale range as specified above; we find that the predictions
from two loop multi-point propagators assuming the Planck
cosmology gives an accurate description of the measured ve-
locity power spectrum. Specifically, the derived amplitudes
Ai of the power spectrum of 4 bins are consistent with the
fiducial cosmology at the 1σ level, and the largest scale bin
is consistent at the 2σ level. We can also compare these con-
straints to those given by Macaulay et al. (2012). Similarly
to our results they found the amplitude of the matter power
spectrum, determined using the composite sample of PVs, to
be statistically consistent with the standard ΛCDM cosmol-
ogy. In addition they also find on the largest scales a slightly
higher amplitude of the power spectrum that expected in the
standard model19.

• We show that when analysing PV surveys with velocities
derived using the Fundamental Plane or the Tully-Fisher

19 Note we cannot directly compare these sets of results given

different bin ranges were used.
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relation, one should perform the analysis using a variable
that is a linear transformation of x = log10 (Dz/DH). We
show the intrinsic scatter is not Gaussian for the PV and
this can significantly bias cosmological constraints. We show
how the analysis can be reformulated using the variable δm,
which removes the bias.

With a large number of upcoming PV surveys, the
prospect for understanding how structure grows in the low-
redshift universe is excellent. Future work will move be-
yond consistency tests by adopting specific modified grav-
ity models and phenomenological parametrisations, includ-
ing measurements of redshift-space distortions and by self-
consistently modifying the growth and evolutionary history
of the universe. This will allow a vast range of spatial and
temporal scales to be probed simultaneously, providing a
strong and unique test of the standard ΛCDM model, and
perhaps even providing some insight on the so-far mysteri-
ous dark energy component of the universe.
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Figure 14. 68% confidence intervals for the normalized growth rate f(k, z = 0)σ(z = 0) for the combined constraints (using no

hyper-parameters). The prediction for the growth rate of structure assuming a fiducial Planck cosmology is given by the solid black line.
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