The 6dF Galaxy Survey: \(z \approx 0 \) measurements of the growth rate and \(\sigma_8 \)

Florian Beutler\(^1\)\(^\star\), Chris Blake\(^2\), Matthew Colless\(^3\), D. Heath Jones\(^4\), Lister Staveley-Smith\(^1,5\), Gregory B. Poole\(^2\), Lachlan Campbell\(^6\), Quentin Parker\(^3,7\), Will Saunders\(^3\), Fred Watson\(^3\)

\(^1\)International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
\(^2\)Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
\(^3\)Australian Astronomical Observatory, PO Box 296, Epping NSW 1710, Australia
\(^4\)School of Physics, Monash University, Clayton, VIC 3800, Australia
\(^5\)ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
\(^6\)Western Kentucky University, Bowling Green, KY 42101, USA
\(^7\)Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, NSW 2109, Sydney, Australia

ABSTRACT

We present a detailed analysis of redshift-space distortions in the two-point correlation function of the 6dF Galaxy Survey (6dFGS). The \(K \)-band selected sub-sample which we employ in this study contains 81,971 galaxies distributed over 17,000 deg\(^2\) with an effective redshift \(z_{\text{eff}} = 0.067 \). By modelling the 2D galaxy correlation function, \(\xi(r_p, \pi) \), we measure the parameter combination \(f(z_{\text{eff}})\sigma_8(z_{\text{eff}}) = 0.423 \pm 0.055 \), where \(f \approx \Omega_m(z) \) is the growth rate of cosmic structure and \(\sigma_8 \) is the r.m.s. of matter fluctuations in 8\(h^{-1} \) Mpc spheres.

Alternatively, by assuming standard gravity we can break the degeneracy between \(\sigma_8 \) and the galaxy bias parameter, \(b \). Combining our data with the Hubble constant prior from Riess et al. (2011), we measure \(\sigma_8 = 0.76 \pm 0.11 \) and \(\Omega_m = 0.250 \pm 0.022 \), consistent with constraints from other galaxy surveys and the Cosmic Microwave Background data from WMAP7.

Combining our measurement of \(f\sigma_8 \) with WMAP7 allows us to test the cosmic growth history and the relationship between matter and gravity on cosmic scales by constraining the growth index of density fluctuations, \(\gamma \). Using only 6dFGS and WMAP7 data we find \(\gamma = 0.547 \pm 0.088 \), consistent with the prediction of General Relativity. We note that because of the low effective redshift of 6dFGS our measurement of the growth rate is independent of the fiducial cosmological model (Alcock-Paczynski effect). We also show that our conclusions are not sensitive to the model adopted for non-linear redshift-space distortions.

Using a Fisher matrix analysis we report predictions for constraints on \(f\sigma_8 \) for the WALLABY survey and the proposed TAIPAN survey. The WALLABY survey will be able to measure \(f\sigma_8 \) with a precision of \(4 - 10\% \), depending on the modelling of non-linear structure formation. This is comparable to the predicted precision for the best redshift bins of the Baryon Oscillation Spectroscopic Survey (BOSS), demonstrating that low-redshift surveys have a significant role to play in future tests of dark energy and modified gravity.

Key words: cosmology: observations, cosmological parameters, large-scale structure of Universe, surveys, galaxies: statistics

1 INTRODUCTION

The distribution of matter in the cosmos depends on the gravitational interaction and the expansion history of the
Universe. Assuming that galaxies trace the mass distribution, a measurement of galaxy clustering can be used to derive fundamental properties of the Universe.

On large scales the movement of galaxies is dominated by the Hubble recession, while on small scales the gravitational field introduces so-called peculiar velocities. Individual galaxy redshifts combine both Hubble recession and peculiar velocities indistinguishably. However, these effects can be statistically distinguished in a large sample of galaxy redshifts. This is the purpose of this paper. The difference between the redshift-inferred distance and the true distance is known as redshift-space distortion. Redshift-space distortions effectively couple the density and velocity fields, complicating the models needed to accurately describe observed galaxy samples. On the other hand they permit measurements of the properties of the galaxy velocity field, which are difficult to access otherwise. In standard gravity we can use the amplitude of peculiar velocities to measure parameters that describe the matter content of the Universe such as Ω_m and σ_8.

In this paper we report measurements of the parameter combination $f(z_{\text{eff}})\sigma_8(z_{\text{eff}})$, where $f = d \ln(D)/d \ln(a)$ is the growth rate of cosmic structure (in terms of the linear growth factor D and cosmic scale factor a) and σ_8 is the r.m.s. of the matter fluctuations in spheres of $8h^{-1}$ Mpc. The measurement of $f(z_{\text{eff}})\sigma_8(z_{\text{eff}})$ can be used to test theories of dark energy and modified gravity, since a stronger gravitational interaction causes a larger growth rate f. It is interesting to note in this context the fact that a different form of gravitational interaction on large scales could be responsible for the accelerating expansion of the Universe (e.g. Dvali, Gabadadze & Porrati 2000; Wang 2008). Probes such as type Ia supernovae, the Cosmic Microwave Background (CMB) or Baryon Acoustic Oscillations, which have proven the existence of the current acceleration of the expansion of the Universe (e.g. Blake et al. 2013), cannot distinguish between acceleration due to a dark energy component with negative pressure or due to a modification of General Relativity. However, measurements of the growth of structure are able to distinguish between these models.

In order to measure $f(z_{\text{eff}})\sigma_8(z_{\text{eff}})$ we have to model the effect of redshift-space distortions on the correlation function. While on large scales linear theory can be used to model these effects, on smaller scales non-linear contributions complicate the process. Several new approaches have been suggested in recent years to extend linear theory. We will discuss some of these models and apply them to our dataset.

Redshift-space distortions have previously been analysed using both the correlation function and power spectrum using data from the 2dF Galaxy Redshift Survey (2dFGRS; Peacock et al. 2001; Hawkins et al. 2003; Cole et al. 2001) and the Sloan Digital Sky Survey (SDSS; Tegmark et al. 2004; Zehavi et al. 2005; Tegmark et al. 2006; Cabre & Gaztanaga 2009; Song et al. 2011; Samushia et al. 2011). More recently it has become possible to do similar studies at higher redshift using the VVDS (Guzzo et al. 2008; WiggleZ. Blake et al. 2011a) and VLT VIMOS surveys (Bielby et al. 2010).

Redshift-space distortion measurements are also sensitive to the overall amplitude of the clustering pattern of matter, commonly parameterised by σ_8 (Lahav et al. 2002). This parameter is used to normalise the amplitude of clustering statistics such as the correlation function, $\xi \propto \sigma_8^2$. From the CMB we have a very accurate measurement of the matter fluctuations in the early universe (the scalar amplitude A_s) at the time of decoupling, z_*. In order to derive $\sigma_8(z=0)$ we have to extrapolate this measurement to redshift zero, involving assumptions about the expansion history of the Universe. The CMB constraint on σ_8 heavily depends on these assumptions. Hence there is a clear advantage in obtaining low-redshift measurements of this parameter. The 6dF Galaxy Survey, which we analyse in this study, is one of the largest galaxy redshift surveys available. Its very small effective redshift and wide areal coverage (41% of the sky) make it a powerful sample for the study of the local galaxy distribution.

Galaxy surveys usually have to consider degeneracies between redshift-space distortions and the Alcock-Paczynski effect, which arises from the need to assume a cosmological model to transform redshifts into distances. At low redshift this effect is very small, meaning that our measurement is fairly independent of the choice of the fiducial cosmological model.

While at high redshift ($z > 1$) the matter density dominates both the expansion of the Universe and the growth of perturbations, at low redshift these two are partially decoupled, with dark energy mostly dominating the background expansion and the matter density dominating the growth of perturbations. As a result in ΛCDM and most proposed modified gravity models, low redshift measurements of the growth rate have a better constraining power than high redshift measurements. The measurement of the growth rate in 6dFGS therefore not only provides a new independent data point at very low redshift, but also promises to make a valuable contribution to tests of General Relativity on cosmic scales.

The outline of this paper is as follows: In section 2 we introduce the 6dF Galaxy Survey. In section 3 we describe the details of the correlation function estimate and introduce the 2D correlation function of 6dFGS. In section 4 we derive the covariance matrix for the 2D correlation function. In section 5 we summarise the theory of redshift-space distortions, including extensions to the standard linear approach. We also discuss wide-angle effects and other systematics, such as the Alcock-Paczynski effect. In section 6 we fit the 2D correlation function to derive $g_0(z_{\text{eff}}) = f(z_{\text{eff}})\sigma_8(z_{\text{eff}})$ and σ_8. Cosmological implications are investigated in section 7. In section 8 we make Fisher matrix predictions for two future low redshift galaxy surveys, WALLABY and the proposed TAIPAN survey. We conclude in section 9.

Throughout the paper we use r to denote real space separations and s to denote separations in redshift-space. Our fiducial model assumes a flat universe with $\Omega_m^{\text{fid}} = 0.27$, $\Omega_X^{\text{fid}} = -1$ and $\Omega_\Lambda^{\text{fid}} = 0$. The Hubble constant is set to $H_0 = 100h$ km s$^{-1}$ Mpc$^{-1}$.

2 THE 6DF GALAXY SURVEY

The 6dF Galaxy Survey (6dFGS; Jones et al. 2004; 2004; 2004) is a near-infrared selected (JHK) redshift survey of 125 000 galaxies across four-fifths of the southern sky, with secondary samples selected in b_J and r_J. The $|b| < 10^\circ$ re-
The clustering in a galaxy survey is estimated relative to a random (unclustered) distribution which follows the same angular and redshift selection function as the galaxy sample itself. We base our random mock catalogue generation on the 6dFGS luminosity function, where we use random numbers to pick volume-weighted redshifts and luminosity function-weighted absolute magnitudes. We then test whether the random-magnitude combination falls within the 6dFGS K-band faint and bright apparent magnitude limits ($8.75 \leq K \leq 12.75$).

Figure 1 shows the redshift distribution of the 6dFGS K-selected sample (black solid line) compared to a mock catalogue with the same number of galaxies (black dashed line).

3 CORRELATION FUNCTION MEASUREMENT

We calculate the co-moving distances for each galaxy using the measured redshift

$$D_C = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}$$

with

$$E(z) = \left[\Omega_0^{\text{fid}} (1 + z)^3 + \Omega_\Lambda^{\text{fid}} \right]^{1/2},$$

where we assume a flat universe with $\Omega_0^{\text{fid}} = 0$ and $\Omega_\Lambda^{\text{fid}} = 1 - \Omega_0^{\text{fid}}$ and describe dark energy as a cosmological constant ($w^{\text{fid}} = -1$). Given the low redshift of our dataset, these assumptions have a very small impact on our final results (see section [5.5]).

We define the positions of two galaxies as \vec{s}_1 and \vec{s}_2. The redshift-space separation is then given by $\vec{h} = \vec{s}_1 - \vec{s}_2$, while $s = (\vec{s}_1 + \vec{s}_2)/2$ is the mean distance to the pair of galaxies. Now we can calculate the separation along the line-of-sight π and the separation across the line-of-sight r_p

$$\pi = \left| \vec{s} \cdot \vec{h} \right| / |\vec{h}|,$$

$$r_p = \sqrt{\vec{h}^2 - \pi^2}.$$

The absolute separation is then given by $s = \sqrt{\pi^2 + r_p^2}$.

We measure the separation between all galaxy pairs in our survey and count the number of such pairs in each separation bin. We do this for the 6dFGS data catalogue, a random catalogue with the same selection function, and a combination of data-random pairs. We call the pair-separation distributions obtained from this analysis step DD, RR and DR, respectively. In the analysis we used 30 random catalogues with the same size as the real data catalogue and average DR and RR. The redshift-space correlation function itself is then given by [Landy & Szalay 1993]:

$$\xi_{\text{data}} = 1 + \frac{DD}{RR} \left(\frac{n_e}{n_d} \right)^2 - 2 \frac{DR}{RR} \left(\frac{n_e}{n_d} \right),$$

where the ratio n_e/n_d is given by

$$\frac{n_e}{n_d} = \frac{\sum_i w_i}{\sum_j N_j w_j},$$

and the sums go over all random (N_e) and data (N_d) galaxies.

The galaxies are weighted by the inverse completeness C_i of their area of the sky

$$w_i(z) = C_i.$$

We will discuss further weighting techniques in the next section.
The analysis we use larger bins of 2
we binned the correlation function in 0.
angular separation
distortion effects are visible: the “finger-of-God” effect at small
correlation function a non-circular shape.
and enters our correlation function estimate as
weighting with
The 2D correlation function of 6dFGS using a density
Figure 2.

There is a possible bias in the estimation of the correlation function due to the fact that we estimate both the mean
density and the pair counts from the same survey. This leads to a non-zero difference between the true correlation function estimate of an ensemble of surveys and the ensemble average of \(\xi(s) \) from each survey. This is commonly known as the integral constraint (e.g. Peebles 1980), which can be calculated as (see e.g. Roche et al. 2002)
\[
ic = \frac{\sum \xi_{\text{model}}RR}{\sum RR}
\]
(8)
and enters our correlation function estimate as
\[
\xi_{\text{data}} = \xi_{\text{data}} + ic,
\]
(9)
where \(\xi_{\text{data}} \) is the redshift-space correlation function from eq. 8 and \(\xi_{\text{model}} \) is the model for the correlation function. In 6dFGS \(ic \) is typically around \(6 \times 10^{-4} \) and so has no significant impact on the final result.

In Figure 2 we show the 2D correlation function calculated from the 6dFGS dataset. In this Figure we use bins of 0.5h⁻¹ Mpc, while for the analysis later on we use larger bins of 2h⁻¹ Mpc (see Figure 3). The figure shows clearly the two effects of redshift-space distortions which we will discuss later in section 3.1 the “finger-of-God” effect at small \(r_p \), and the linear infall effect at larger \(r_p \) which gives the correlation function a non-circular shape.

3.1 Density weighting

In Fourier space the error in measuring the amplitude of a mode of the linear power spectrum \(P \) is given by
\[
\sigma_{P(k)} = (b + f \mu)^2 P(k) + \langle N \rangle,
\]
(10)
where \(b \) is the linear bias, \(f \) is the growth rate, \(\mu \) is the cosine of the angle to the line of sight and \(P(k) \) is the matter power spectrum. The first term on the right hand side of this equation represents the sample-variance error, while the second term \(\langle N \rangle \) represents the Poisson error.

If the sample-variance error is dominant we can reduce the power spectrum error by employing a weighting scheme which depends upon the galaxy density \(n(z) \), such as the one suggested by Fieldman, Kaiser & Peacock (1994)
\[
w_i(z) = \frac{1}{1 + n(z)P_0},
\]
(11)
where \(P_0 \) describes the amplitude of the weighting. A stronger weighting (larger value of \(P_0 \)) yields a smaller sample-variance error since it increases the survey volume by up-weighting sparsely sampled regions. However, such a weighting scheme also increases the Poisson error because it shifts the effective redshift to larger values with a smaller galaxy number density. This is illustrated in Figure 3(a) and 3(b). Such a weighting scheme is standard for large scale structure analyses.

In a magnitude-limited sample such as 6dFGS, up-weighting higher redshift galaxies also has the effect of shifting the galaxy bias to larger values. The sample-variance error is proportional to the clustering amplitude, and so a larger bias results in a larger error. However, the weighting will still ensure that the relative error of the power spectrum, \(\sigma_{P(k)}/P(k) \), is minimised. The redshift-space distortion signal is inversely proportional to the galaxy bias, \(\beta \approx \Omega_m(z)/b \). If weighting increases the bias \(b \), it also reduces the signal we are trying to measure. We therefore must investigate whether the advantage of the weighting (the reduced relative error) outweighs the disadvantage (increasing galaxy bias).

The situation is very different for measuring a signal that is proportional to the clustering amplitude, such as the baryon acoustic peak. In this case the error and the signal are proportional to the bias, and so weighting will always be beneficial. We stress that an increasing bias with redshift is expected in almost all galaxy redshift surveys. Therefore redshift-space distortion studies should first test whether galaxy weighting improves the measurement. The 6dF Galaxy Survey is quite sensitive to the weighting scheme employed because it has a high galaxy density, making the sample-variance error by far the dominant source of error.

Finally, we have to consider the correlation between the bins in the measured power spectrum or correlation function. If the error is sample-variance dominated, the bins will show large correlation (especially in the correlation function), while in the case of Poisson-noise dominated errors, the correlation is much smaller. Weighting will always increase the Poisson noise and hence reduce the correlation between bins.

1 As the correlation function and power spectrum are related by a Fourier transform, the following discussion also holds true for a correlation function measurement.
All of the density weighting effects discussed above need to be considered, before deciding which weighting is best suited to the specific analysis. We summarise as follows:

- If a galaxy sample is sample-variance limited, density weighting will reduce the (relative) error of the clustering measurement.
- In most galaxy redshift surveys, the density weighting increases the galaxy bias, which reduces the redshift-space distortion signal, by flattening the clustering anisotropy.
- Galaxy weighting also reduces the correlation between bins in the power spectrum and correlation function.

Whether the signal-to-noise is actually improved by density weighting depends on the specific sample. For the 6dFGS redshift-space distortion analysis we found $P_0 \approx 1600h^{-3}\text{Mpc}^3$ leads to the most accurate constraint on the growth rate.

This discussion also indicates that low-biased galaxy samples have an advantage over a highly biased galaxy sample in measuring redshift-space distortions. We will discuss this point further in section 8.

4 ERROR ESTIMATE

In this section we will derive a covariance matrix for the 2D correlation function using jack-knife re-sampling. We also use log-normal realisations to test the jack-knife covariance matrix.

4.1 Jack-knife re-sampling

We divide the dataset into $N = 480$ subsets, selected in R.A. and Dec. Each re-sampling step excludes one subset before calculating the correlation function. The $N - 1$ remaining subsets have a volume which is $(N - 1)/N$ times the volume of the original data. The covariance matrix is then given by

$$G_{ij} = \frac{(N - 1)}{N} \sum_{k=1}^{N} [\xi^k(s_i) - \bar{\xi}(s_i)][\xi^k(s_j) - \bar{\xi}(s_j)],$$

where $\xi^k(s_i)$ is the correlation function estimate at separation s_i with the exclusion of subset k. The mean value is defined as

$$\bar{\xi}(s_i) = \frac{1}{N} \sum_{k=1}^{N} \xi^k(s_i).$$

The case $i = j$ gives the error ignoring correlations between bins $\sigma_i^2 = C_{ii}$.

4.2 Log-normal realisations

We can create a log-normal realisation [Coles & Jones 1991, Cole et al. 2005, Percival et al. 2007, Blake et al. 2011, Beutler et al. 2011] of a galaxy survey by deriving a density field from a model power spectrum, $P(k)$, assuming Gaussian fluctuations. This density field is then Poisson sampled, taking into account the window function and the total number of galaxies. The assumption that the input power spectrum has Gaussian fluctuations can only be used if the fluctuations are much smaller than the mean density, otherwise the Gaussian model assigns a non-zero probability to regions of negative density. A log-normal random field, $LN(\bar{x})$, can avoid this unphysical behaviour. It is obtained from a Gaussian field $G(\bar{x})$ by

$$LN(\bar{x}) = \exp[G(\bar{x})] - 1,$$

which is positive-definite but approaches $G(\bar{x})$ whenever the perturbations are small. As an input power spectrum for the log-normal field we use the linear model [Kaiser 1987], given by

$$P_g(k, \mu) = b^2(1 + \beta \mu^2)^2 P_{\delta\delta}(k)$$

with $b = 1.47$ and $\beta = 0.35$, which is consistent with the parameters we measure for 6dFGS (see section 5). $P_{\delta\delta}(k)$
The correlation matrix for the 2D correlation function \(\xi(r_p, \pi) \) with a bin size of 2 \(\times \) 2 \(h^{-1} \) Mpc. The upper-left corner shows the jack-knife estimate, while the lower-right corner shows the result of using 1500 log-normal realisations. Since this plot shows the correlation of all 15 \(\times \) 15 bins it contains 225 \(\times \) 225 entries.

Figure 5. This plot shows the correlation of bin 127 \((r_p = 13h^{-1} \) Mpc, \(\pi = 17h^{-1} \) Mpc) with all other bins in the 2D correlation function, derived using jack-knife re-sampling. It corresponds to row/column 127 of the jack-knife correlation matrix which is shown in Figure 4 (upper-left corner).

5 MODELLING THE 2D CORRELATION FUNCTION

In this section we discuss the theory of redshift-space distortions, starting with the standard linear perturbation theory. We then describe different approaches for extending the linear model to include non-linear structure formation. We also discuss deviations from the plane-parallel approximation.

5.1 Linear redshift-space distortions

The position of a galaxy in real space \(\vec{r} = (x, y, z) \) is mapped to the position in redshift-space, \(\vec{s} \), via

\[
\vec{s} = \vec{r} + \frac{v_z(r)}{aH(z)} \hat{z},
\]
where the unit vector \hat{z} indicates the line-of-sight direction, and the quantity v_z is the line-of-sight component of the velocity field, namely $v_z = \vec{\nu} \cdot \hat{z}$. The scale factor a is defined as $1/(1+z)$ and $H(z)$ is the Hubble constant at redshift z. The second term in the equation above represents peculiar velocities caused by gravitational interaction. On small scales this elongates structures along the line-of-sight and leads to the so-called “finger-of-God” effect [Jackson 1972]. On large scales matter falls in towards over-dense regions and systematically influences our distance measurement, making the over-densities appear more over-dense. The latter effect can be described by linear theory, while the “finger-of-God” effect is a non-linear phenomenon.

The model of linear redshift-space distortions has been developed by [Kaiser 1987] and [Hamilton 1992] assuming a plane-parallel approximation. In Fourier space the linear model can be written as

$$P_g(k, \mu) = b^2 (1 + \beta \mu^2)^2 P_{\delta\delta}(k), \quad (20)$$

where $P_{\delta\delta}(k)$ is the matter density power spectrum and $P_g(k, \mu)$ is the galaxy density power spectrum. In this model, linear redshift-space distortions are quantified by the parameter β, which is defined as

$$\beta = \frac{1}{b} \frac{d \ln D(z)}{d \ln a} \simeq \Omega_m(z). \quad (21)$$

where b is the linear galaxy bias factor, $D(z)$ is the growth factor and γ is the gravitational growth index, which takes the value $\gamma = 0.55$ in ΛCDM [Linder 2005]. $\Omega_m(z)$ is the matter density at redshift z, and is defined as

$$\Omega_m(z) = \frac{H_0^2}{H(z)^2} \Omega_m(z = 0) (1+z)^3 \quad (22)$$

with

$$\frac{H_0^2}{H(z)^2} = \left[\Omega_m(1+z)^3 + \Omega_k \right]^{-1}, \quad (23)$$

where we again follow our fiducial model of $\Omega_k^{\text{fid}} = 0$ and $w^{\text{fid}} = -1$. Modifications of the gravitational force mainly affect γ, while changes in the expansion history of the Universe affect $\Omega_m(z)$.

5.2 Parameterisation

From now on we will formulate our equations in terms of $g_\delta(z) = f(z) \sigma_\delta(z)$ and $g_\sigma(z) = b \sigma_\delta(z)$. We choose the parameter set $\{g_\delta, g_\sigma, b\}$ instead of $\{\beta, \sigma_\delta, b\}$, because σ_δ and the linear bias, b, are degenerate and difficult to disentangle [White, Song & Percival 2008; Song & Percival 2008; Song et al. 2010]. Within this parameterisation the power spectrum is expressed as

$$P_g(k) = b^2 P_{\delta\delta}(k) = g_\delta^2 Q_{\delta\delta}(k), \quad (24)$$

where $Q_{\delta\delta}(k)$ is the unnormalised matter density power spectrum (see eq. 20). In terms of our new parameters, we can write

$$\beta = \frac{g_\delta}{g_\sigma}. \quad (25)$$

5.3 Extensions to linear theory

For the remainder of this section we will discuss possible extensions of the linear model to include non-linear structure formation and wide-angle effects. The simplest model of non-linearities is the so-called streaming model [Peebles 1984; Hatton & Cole 1998]. Here, the redshift-space correlation function is just a convolution of the linear correlation function in redshift-space with a pairwise velocity probability

$$\xi_s(r_p, \pi) = \int_{-\infty}^{\infty} \xi(r_p, \pi - \frac{v}{H(z_{\text{eff}})a_{\text{eff}}}) F(v)dv, \quad (26)$$

where $a_{\text{eff}} = 1/(1+z_{\text{eff}})$ is the scale factor and $H(z_{\text{eff}})$ is the Hubble constant at the effective redshift. We chose $F(v)$ to be an exponential distribution [Peacock & Dodds 1994]

$$F(v) = \frac{1}{\sigma_p \sqrt{2\pi}} \text{exp} \left[-\frac{v^2}{2 \sigma_p^2} \right], \quad (27)$$

which has been shown to successfully describe observations [Davis & Peebles 1982; Fisher et al. 1994; Marzke et al. 1994; Landy 2002]. Although the pairwise velocity dispersion within a halo is expected to follow a Gaussian distribution instead of an exponential, galaxies populate halos of a wide range of masses and velocity dispersions, which combine to approximately form an exponential function [Sheth 1996; Diaferio & Geller 1994; Seto & Yokoyama 1998]. The parameter σ_p depends on galaxy type (e.g. Madgwick et al. 2003) and hence its use for cosmological constraints is limited.

In recent years many improvements to the model discussed above have been suggested. We will initially discuss these models in Fourier space because the theoretical motivation is clearer and many expressions needed for these models simplify considerably. However, since our data is in real space we will also give real-space expressions later on. We start with the streaming model of eq. 26, which in Fourier space is given by

$$P_g(k, \mu) = b^2 (1 + \beta \mu^2)^2 P_{\delta\delta}(k) \frac{1}{1 + k^2 \mu^2 \sigma_p^2/2}. \quad (28)$$

Hence in Fourier space, the convolution with an exponential function becomes a multiplication by a Lorentzian distribution.

The model above assumes that there is a perfect correlation between the velocity field and the density field, which is given by $P_{\delta\delta}(k) = P_{\delta\sigma}(k) = P_{\delta\delta}(k)$ where $P_{\delta\delta}(k)$ is the matter density power spectrum as before, $P_{\delta\sigma}(k)$ is the velocity divergence power spectrum where $\theta = \nabla \cdot \vec{v}$ is the velocity divergence, and $P_{\delta\delta}(k)$ is the cross power spectrum. Non-linear effects will violate these assumptions, since the density power spectrum is expected to increase in amplitude at small scales because of non-linear effects, while the velocity field becomes randomised at small scales (e.g. within virialized galaxy clusters) and hence $P_{\delta\sigma}(k)$ will decrease in amplitude (e.g. [Carlson 2004]). Scoccimarro (2004) suggested expressing the 2D power spectrum without the assumption of linear relations between the density field and
velocity field, by
\[P_\theta(k, \mu) = F_\theta(k, \mu, \sigma_\nu) \times \left[b^2 P_{\delta\delta}(k) + 2\mu^2 b f P_{\delta\theta}(k) + \mu^4 f^2 P_{\theta\theta}(k) \right] \]
\[= F_\theta(k, \mu, \sigma_\nu) \times \left[g_{\nu}^2 Q_{\delta\delta}(k) + 2\mu^2 g_\nu g_{\theta} Q_{\delta\theta}(k) + \mu^4 g_{\theta}^2 Q_{\theta\theta}(k) \right], \quad (29) \]
where the different \(Q_{\delta\delta} \) are defined as
\[Q_{\delta\delta}(k) = P_{\delta\delta}(k)/\sigma_\delta(z_{\text{eff}})^2, \]
\[Q_{\delta\theta}(k) = P_{\delta\theta}(k)/\sigma_\delta(z_{\text{eff}})^2, \]
\[Q_{\theta\theta}(k) = P_{\theta\theta}(k)/\sigma_\theta(z_{\text{eff}})^2, \quad (30) \]
and the damping function \(F_\theta(k, \mu, \sigma_\nu) \) is usually chosen to be a Gaussian of the form
\[F_\theta(k, \mu, \sigma_\nu) = e^{-(k\mu\sigma_\nu)^2}. \quad (31) \]

The parameter \(\sigma_\nu \) quantifies the non-linear dispersion in the bulk motion of halos. It is different to the \(\sigma_\rho \) parameter we introduced earlier that describes small-scale randomised motion (e.g. of galaxies within a halo). We can derive \(\sigma_\nu \) from the velocity power spectrum as
\[\sigma_\nu^2(z) = \frac{g_\nu^2(z)^2}{\sigma_\Delta} \int_0^\infty Q_{\theta\theta}(k)dk. \quad (32) \]

Jennings et al. (2011) provide fitting formulae for \(P_{\delta\delta}(k) \) and \(P_{\delta\theta}(k) \) derived from N-body simulations. They find the following relation between the different power spectra
\[P_{\delta\delta}(k) = \frac{c_0 \sqrt{P_{\delta\delta}(k) + c_1 P_{\delta\delta}(k)}}{c_2 + c_3 P_{\delta\delta}(k)}, \quad (33) \]
where \(P_{\delta\delta}(k) \) can be obtained from CAMB including halo bias (Smith et al. 2003). For the cross power spectrum \(P_{\delta\theta}(k) = P_{\theta\delta}(k) \) we use the (updated) parameters \((a_0, a_1, a_2, a_3) = (-12,483.8, 2.55449, 1.28129, 2.54069)\) and \(P_{\theta\theta}(k) = P_{\delta\delta}(k) \) we use \((-12,480.5, 1.52194, 2.16587, 1.70640)\).

The fitting formula reproduces \(P_{\delta\theta} \) to better than 1% for \(k < 0.4h\) Mpc\(^{-1}\), to 10% for \(0.4 < k < 0.7h\) Mpc\(^{-1}\), and to 15% for \(0.7 < k < 1h\) Mpc\(^{-1}\). It also reproduces \(P_{\theta\theta} \) to less than 4% over the whole range \(k < 1h\) Mpc\(^{-1}\) (Jennings, private communication). We cut off the integral when the Jennings formula predicts negative values, although because of the high precision of the fitting formula up to large \(k \), such a cut-off will not affect our measurement.

We can express eq. 29 in real-space as
\[\xi_{\delta\delta}(r, \phi) = \left[g_{\nu}^2 \xi_{0,0,0}(r) + \frac{2}{3} g_\nu g_\theta \xi_{0,0,\theta}(r) + \frac{1}{5} g_\theta^2 \xi_{0,\theta,\theta}(r) \right] P_0(\mu) \]
\[+ \frac{4}{3} g_\nu g_\theta \xi_{2,0,\theta}(r) + \frac{4}{7} g_\theta^2 \xi_{2,\theta,\theta}(r) \right] P_2(\mu) \]
\[+ \frac{8}{35} g_\theta^2 \xi_{4,\theta,\theta}(r) P_4(\mu), \quad \xi_{\delta\theta}(r) = \frac{1}{15} \int_0^1 \frac{k^2 dk d\mu}{(2\pi)^2} e^{-(k\mu\sigma_\nu)^2} \]
\[\times \cos(kr\mu)Q_{\delta\theta}(k)P_2(\mu), \quad (34) \]
where \(P_n(\mu) \) are the Legendre polynomials and the spherical harmonic moments \(\xi_{\ell,xy}(r) \) are given by
\[\xi_{\ell,xy}(r) = \int_0^1 \int_{-1}^1 k^2 dk d\mu e^{-(k\mu\sigma_\nu)^2} \]
\[\times \cos(kr\mu)Q_{\delta\theta}(k)P_2(\mu). \quad (35) \]

Appendix A shows a partial analytic solution for the double integral above.

We therefore have two different models which we will apply to our data: The simple streaming model \(\xi_{\delta\delta}(r, \phi, \pi) \) and the Scoccimarro models \(\xi_{\delta\delta}(r, \phi, \pi) \). Note that \(\xi_{\delta\delta}(r, \phi, \pi) \) does not include the parameter \(\sigma_\nu \) and hence has one less free parameter than the streaming model.

All equations above are based on the plane-parallel approximation. In the case of 6dFSG we also need to account for wide-angle effects. This means we will replace the equations above with more general descriptions, which we discuss in the next section.

5.4 Wide-angle formalism

So far we have assumed that the separation between galaxy pairs is much smaller than the distance of the galaxies from the observer. The 6dF Galaxy Survey has a maximum opening angle of 180° and the (effective) redshift is fairly low at \(z_{\text{eff}} = 0.067 \) (see section 3). We therefore include wide-angle correction terms. The wide-angle description of redshift-space distortions has been laid out in several papers (Szalay et al. 1997; Szapudi 2004; Matsubara 2004; Papai & Szapudi 2008; Raccanelli et al. 2010). Here we will expand on this work by formulating the equations in terms of \(g_\theta \) and \(g_\theta \), and by distinguishing between the density-density, velocity-velocity and density-velocity contributions \((\xi_{\delta\delta}, \xi_{\theta\theta} \) and \(\xi_{\theta\theta} \)). The model will then correspond to the Scoccimarro model (eq. 34) in the last section.

The general redshift-space correlation function (ignoring the plane-parallel approximation) depends on \(\phi \) and \(s \). Here, \(s \) is the separation between the galaxy pair, \(\theta \) is the half opening angle, and \(\phi \) is the angle of \(s \) to the line-of-sight (see Figure 1 in Raccanelli et al. 2010). The angles \(\phi \) and \(\theta \) are not independent, but the relation between them is usually expressed through the two angles \(\phi_1 \) and \(\phi_2 \) given by \(\phi = \frac{1}{2}(\phi_1 + \phi_2) \) and \(\theta = \frac{1}{2}(\phi_1 - \phi_2) \). The total correlation function model, including \(O(\theta^2) \) correction terms, is then given by (Papai & Szapudi 2008)
\[\xi(\phi, \theta, s) = a_{00} + 2a_{02} \cos(2\phi) + a_{22} \cos(2\phi) + b_{22} \sin^2(2\phi) + [- 4a_{02} \cos(2\phi) - 4a_{22} - 4b_{22} - 4a_{10} \cot^2(\phi) + 4a_{11} \cot^2(\phi) - 4a_{12} \cot^2(\phi) \cos(2\phi) + 4b_{11} - 8b_{12} \cos^2(\phi)] \theta^2 + O(\theta^2). \quad (36) \]
This equation reduces to the plane-parallel approximation if
\[\theta = 0. \] The factors \(a_{xy} \) and \(b_{xy} \) in this equation are given by

\[
\begin{align*}
a_{00} &= \frac{g_{g,0,0}}{9}\xi_{0,0,0}(r) + \frac{2g_{g,0,2}}{3}\xi_{0,2,0}(r) + \frac{2g_{g,2,0}}{15}\xi_{2,0,0}(r) \\
&\quad - \frac{g_{g,0,0}}{3}\xi_{2,0,0}(r) + \frac{2g_{g,0,0}}{14}\xi_{0,2,0}(r) + \frac{2g_{g,2,0}}{28}\xi_{2,0,0}(r) \\
a_{02} &= -\frac{g_{g,0,0}}{2}\xi_{0,2,0}(r) + \frac{3g_{g,0,0}}{4}\xi_{0,2,0}(r) + \frac{g_{g,2,0}}{28}\xi_{2,0,0}(r) \\
a_{22} &= \frac{g_{g,0,0}}{15}\xi_{0,0,0}(r) - \frac{g_{g,0,2}}{21}\xi_{0,2,0}(r) + \frac{19g_{g,2,0}}{140}\xi_{2,0,0}(r) \\
b_{22} &= \frac{g_{g,0,0}}{15}\xi_{0,0,0}(r) - \frac{g_{g,0,2}}{21}\xi_{0,2,0}(r) - \frac{4g_{g,2,0}}{35}\xi_{2,0,0}(r) \\
b_{10} &= \frac{2g_{g,0,0}}{5}\xi_{1,0,0}(r) + \frac{4g_{g,2,0}}{5}\xi_{0,1,0}(r) \\
&\quad + \left[\frac{2g_{g,0,0}}{5}\xi_{0,1,0}(r) + \frac{2g_{g,2,0}}{5}\xi_{1,0,0}(r) \right],
\end{align*}
\]

where the spherical harmonic moments, \(\xi_{m,xy}(r) \), are

\[
\xi_{m,xy}(r) = \int_{0}^{\infty} \int_{-1}^{1} \frac{k^m dk dp}{(2\pi)^2} e^{-(k_{\|} a)^2} \cos(k r \mu) Q_{xy}(k) P_{m}(\mu),
\]

with \(Q_{xy}(k) \), \(Q_{0,0}(k) \), and \(Q_{0,2}(k) \) as defined in equation (30) (see appendix A for an analytic solution).

In order to obtain a model for the 2D correlation function (including wide-angle effects), we can simply integrate eq. (34) over \(\theta \). In this case of the plane-parallel approximation this would correspond to eq. (33). To reduce the equation to the simple streaming model we have to set \(\sigma_v = 0 \), \(Q_{sd}(k) = Q_{st}(k) = Q_{sr}(k) \) and convolve with \(F(v) \).

Samushia et al. (2011) studied wide angle effects in the SDSS-LRG sample and found that such effects are very small. The lower redshift and larger sky coverage of the 6dF Galaxy Survey mean that wide-angle effects are certainly larger in our data set than SDSS-LRG. However, we found no significant impact of such effects on our results. This is mainly because our analysis includes only rather small scales (\(\sigma \approx 30 h^{-1} \text{Mpc}, r_p \approx 30 h^{-1} \text{Mpc} \), see section 4). This agrees with the findings of Beutler et al. (2011).

We stress that the correction terms discussed above only capture first-order effects and so we additionally restrict our analysis to \(\theta < 50^\circ \).

Many authors have found, using N-body simulations, that both the simple streaming and Scoccimarro models do not capture all non-linear and quasi-linear effects present in redshift surveys (e.g. Jennings, Baugh & Pascoli 2011b, Kwan, Lewis & Linden 2013, Torre & Gazza 2012 and references therein). For example the linear bias model seems to be too simplistic at small scales. In this study we restrict ourselves to the models discussed above but would like to point out that many other models have been suggested (Matsubara 2008c, Taruya, Nishimichi & Saito 2011, Reid & White 2011, Seljak & McDonald 2011) which could be compared to our data in future work.

\section{5.5 Systematics and the Alcock-Paczynski effect}

A dataset such as 6dFGS, containing galaxies with a high linear bias factor, may be prone to scale-dependent galaxy bias on small scales. We used the GiggleZ simulations (Poole et al., in preparation) to derive the form of the scale-dependent bias. We find a 1.7\% correction to a linear bias at scales of \(s = 10 h^{-1} \text{Mpc} \), and note that this correction has a small but non-negligible impact on our results, depending on the smallest scales included in the fit.

A further systematic uncertainty comes from the so-called Alcock-Paczynski (AP) effect (Alcock & Paczynski 1974). By assuming a cosmological model for the conversion of redshifts and angles to distances (see section 3) we could introduce an additional anisotropic signal in the correlation function which depends on the angle to the lines-of-sight, if the true cosmology differs from our fiducial cosmological model. These distortions are degenerate with the linear redshift-space distortion signal and hence both effects need to be modelled to avoid systematic bias (Ballinger, Peacock & Heavens 1996, Simpson & Peacock 2010). Using the two scaling factors

\[
\begin{align*}
f_{\parallel} &= \frac{H(z)}{H(z)} \\
f_{\perp} &= \frac{D_A(z)}{D_A(z)},
\end{align*}
\]

we can account for the AP effect by rescaling the corresponding axis

\[
\begin{align*}
\pi' &= \frac{\pi}{f_{\parallel}} \\
r'_p &= \frac{r_p}{f_{\perp}}.
\end{align*}
\]

While this is a matter of concern for high-redshift surveys, the 6dF Galaxy Survey is very nearly independent of the Alcock-Paczynski distortions because the distances \(\pi \) and \(r_p \) are almost independent of the fiducial cosmological model when expressed in units of \(h^{-1} \text{Mpc} \). For example the value of \(f_{\parallel} \) at \(z = 0.067 \) changes by only (0.3\%, 1.5\%) for 10\% changes in \((\Omega_m, w) \). The corresponding values for \(f_{\perp} \) are (0.7\%, 1.6\%). The relative tangential/ radial distortion depends on the value of \((1 + z)D_A(z)H(z)/c \) relative to the fiducial model:

\[
\frac{D_A(z)H(z)}{D_A(z)H_{\text{fid}}(z)} = \frac{f_{\parallel}}{f_{\parallel}}.
\]

This parameter combination changes by only 0.3 (0.1)\% for 10\% changes in \(\Omega_m \) (\(w \)).

Finally, it has been shown that \(\gamma \) has a degeneracy with the equation of state parameter for dark energy, \(w \) (Simpson & Peacock 2010). High redshift measurements usually assume \(w = -1 \), which could introduce a bias in the measured value of \(\gamma \) if dark energy is not exactly a cosmological constant. Again 6dFGS is robust against such effects.

\section{6 FITTING THE 2D CORRELATION FUNCTION}

We now fit the two models for the 2D correlation function we developed earlier (\(\xi_{st}(r, \pi) \) and \(\xi_{sr}(r, \pi) \)) to our data. For the final constraints on \(f \sigma_8 \) and \(\sigma_8 \) we use the \(\xi_{sr}(r, \pi) \) model
since it gives similar results to the streaming model with one less free parameter.

Other studies (e.g. Samushia et al. 2011) prefer to analyse the correlation function moments ξ_0, ξ_2 (and if possible ξ_4), which carry the same information as the 2D correlation function. The correlation function moments have the advantage that the number of bins grows linearly with the highest scales analysed, while for $\xi(r_p, \pi)$ the number of bins grows quadratically. This makes it easier to get reliable covariance matrices [Samushia et al. 2011] also show that the measurement errors of ξ are more Gaussian. However, the correlation function moments are integrals over μ and hence carry information from all directions, including $\mu = 0$. Finger-of-God distortions can influence the correlation function moments up to large scales (20 – 30$h^{-1}\text{Mpc}$), while in the 2D correlation function they can be excluded via a cut in r_p. In 6dFGS we have found that these non-linear effects have a strong impact on the correlation function moments up to 30$h^{-1}\text{Mpc}$. We have therefore decided to focus on the 2D correlation function instead of the correlation function moments.

6.1 Derivation of the growth rate, $g_0 = f \sigma_8$

In Figure 6 we show the 6dFGS 2D correlation function. For our analysis we bin the data in $2 \times 2h^{-1}\text{Mpc}$ bins from 0 to 30$h^{-1}\text{Mpc}$ in r_p and π. Including larger scales does not add further information. At small r_p, the finger-of-God effect becomes dominant and we expect any linear model to fail. Since our description of non-linearities, in both of our models, is limited in its capability to capture all non-linear effects, it is necessary to include a cut-off scale r_p^{cut} marking a lower limit of the fitting range in r_p.

Figure 7 shows the measured value of g_0 as a function of the cut-off scale r_p^{cut} for our two different models. Above $r_p^{\text{cut}} \approx 8h^{-1}\text{Mpc}$ the streaming model, $\xi_0(r_p, \pi)$, approaches a constant value of g_0. Our second model, $\xi_{\text{Sc}}(r_p, \pi)$, contains a systematic error up to much larger scales, before it comes into agreement with the streaming model at about $r_p^{\text{cut}} = 16h^{-1}\text{Mpc}$. This is expected since this model does not include a description of effects in the non-linear regime.

Figure 6. The 2D correlation function in 2$h^{-1}\text{Mpc}$ bins. The fitting area is indicated by the dashed lines, where black corresponds to the streaming model, ($\xi_0(r_p, \pi)$) and red corresponds to the Scoccimarro model ($\xi_{\text{Sc}}(r_p, \pi)$). The black and red contours show the best fitting models for $\xi_0(r_p, \pi)$ (black) and $\xi_{\text{Sc}}(r_p, \pi)$ (red). The deviations seen in the two contours at large scales are well within the error bars of the two models, which can be seen in Figure 5. At small scales ($<14h^{-1}\text{Mpc}$) the Scoccimarro model predicts much more clustering, while in the real data this clustering is smeared out along the line of sight because of the finger-of-God effect.

For the final constraints we choose $r_p^{\text{cut}} = 10h^{-1}\text{Mpc}$ for the streaming model and $r_p^{\text{cut}} = 16h^{-1}\text{Mpc}$ for the Scoccimarro model. We also note that since the Scoccimarro model is based on only two free parameters (g_0 and g_b), the error is generally smaller compared to the streaming model, which has three free parameters (g_0, g_b, and σ_8). Other studies fit for the parameter σ_v (e.g. Torre & Guzzo 2012) in the Scoccimarro model, but we derive it using eq. (32).

For $\xi_{\text{Sc}}(r_p, \pi)$ we have the fitting range $0 < \pi < 30h^{-1}\text{Mpc}$ and $16 < r_p < 30h^{-1}\text{Mpc}$, which results in a total of 105 bins. The best-fitting results are $g_0 = 0.423 \pm 0.055$ and $g_b = 1.134 \pm 0.073$, where the errors for each parameter are derived by marginalising over all other parameters. The χ^2 of this fit is 115 with 103 degrees of freedom (d.o.f.), indicating a good fit to the data.

For $\xi_0(r_p, \pi)$, we have the fitting range $0 < \pi < 30h^{-1}\text{Mpc}$ and $10 < r_p < 30h^{-1}\text{Mpc}$, which results in a total of 150 bins. The best-fitting parameters are $g_0 = 0.389 \pm 0.067$, $g_b = 1.084 \pm 0.036$ and $\sigma_8 = 198 \pm 81 \text{ km/s}$. The reduced χ^2 of this fit is given by χ^2/d.o.f. = 202/147 = 1.37. We compare the constraints on g_0 and g_b from both models in Figure 5.

In the Scoccimarro model we could use the parameter $\sigma_v \propto g_0$ instead of g_0 to test cosmology, as suggested by Song et al. 2010. Our best fit gave $\sigma_v = 2.59 \pm 0.34h^{-1}\text{Mpc}$. However, this parameter depends on an additional integral over the velocity power spectrum, which adds a theoretical uncertainty. We therefore prefer to use g_0 in the following discussions.

Table 1. Cosmological parameters derived from the 6dFGS 2D correlation function. The effective redshift is $z_{\text{eff}} = 0.067$. The last column indicates the priors/assumptions which go into each individual parameter measurement. The prior on the Hubble constant comes from Riess et al. (2011) and the WMAP7 prior from Komatsu et al. (2011). The asterisks denote parameters which are derived from fitting parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RIESS/WMAP7 prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_0(z_{\text{eff}})$</td>
<td>0.423 \pm 0.055</td>
</tr>
<tr>
<td>$g_0(z_{\text{eff}})$</td>
<td>1.134 \pm 0.073</td>
</tr>
<tr>
<td>β^*</td>
<td>0.373 \pm 0.054</td>
</tr>
<tr>
<td>σ_8</td>
<td>0.76 \pm 0.11</td>
</tr>
<tr>
<td>Ω_m</td>
<td>0.25 \pm 0.022</td>
</tr>
<tr>
<td>b</td>
<td>1.48 \pm 0.27</td>
</tr>
<tr>
<td>$f^*(z_{\text{eff}})$</td>
<td>0.58 \pm 0.11</td>
</tr>
<tr>
<td>γ</td>
<td>0.547 \pm 0.088</td>
</tr>
<tr>
<td>Ω_m</td>
<td>0.271 \pm 0.027</td>
</tr>
</tbody>
</table>

Figure 7 shows the measured value of g_0 as a function of the cut-off scale r_p^{cut} for our two different models. Above $r_p^{\text{cut}} \approx 8h^{-1}\text{Mpc}$ the streaming model, $\xi_0(r_p, \pi)$, approaches a constant value of g_0. Our second model, $\xi_{\text{Sc}}(r_p, \pi)$, contains a systematic error up to much larger scales, before it comes into agreement with the streaming model at about $r_p^{\text{cut}} = 16h^{-1}\text{Mpc}$. This is expected since this model does not include a description of effects in the non-linear regime.
We can also express our results in terms of β which is given by $\beta = g_\theta/g_\rho = 0.373 \pm 0.054$. We summarise all measured and derived parameters in Table 4.

6.2 Derivation of σ_8 and Ω_m

In this section we use redshift-space distortions to directly measure σ_8. The angular dependence of the redshift-space distortion signal in the 2D correlation function allows us to measure β, which quantifies the amplitude of redshift-space distortions. Together with $\Omega_m(z)$ and $\gamma = 0.55$, this constrains the linear bias b through the equation

$$b \approx \frac{\Omega_m(z)}{\beta}. \quad (44)$$

Knowing b we can use the absolute amplitude of the correlation function, $[b\sigma_8(z)]^2$, to constrain $\sigma_8(z=0) = [D(z=0)/D(z_{\text{cut}})] \times \sigma_8(z_{\text{cut}})$.

For computational reasons we use our first model, $\xi_\rho(r_p, \pi)$, in this sub-section and fit the five parameters σ_8, Ω_m, b, H_0 and σ_p using an MCMC approach. Since the shape of the correlation function is only sensitive to $\Gamma = \Omega_m h$, we cannot constrain Ω_m and H_0 at the same time. For the final results we include a prior on the Hubble constant ($H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ from Riess et al. [2011]) from now on referred to as HST prior) and marginalise over it. We use the same binning and fitting ranges as in the previous section.

The best-fitting model results in $\chi^2/d.o.f = 1.35$. We find $\sigma_8 = 0.76 \pm 0.11$, $\Omega_m = 0.250 \pm 0.022$, $b = 1.48 \pm 0.27$.

Figure 7. The value of $g_\rho(z_{\text{cut}}) = f(z_{\text{cut}})\sigma_8(z_{\text{cut}})$ as a function of the cut-off scale r_{cut}^ρ, obtained by fitting the 6dFGS 2D correlation function with two different models (as described in section 5.3 and 5.4). At large scales the two models converge to similar values, while on small scales the models deviate from each other because of the different descriptions of non-linear evolution. For the final parameter measurements in Table 1 we chose model 2, $\xi_\rho(r_p, \pi)$, with a conservative cut-off scale of $r_{\text{cut}}^\rho = 16h^{-1}\text{ Mpc}$. In the lower panel we plot the reduced χ^2 as an indication of the quality of the fit.

Figure 8. Likelihood distribution of g_θ and g_ρ, derived from the fit to the 2D correlation function. The solid black contours show model $\xi_\rho(r_p, \pi)$, while the dashed contours show the streaming model (see section 5.3 and 5.4 for details of the modelling). The fitting range is $0 < \pi < 30h^{-1}\text{ Mpc}$ and $10 < r_p < 30h^{-1}\text{ Mpc}$ for $\xi_\rho(r_p, \pi)$ and $0 < \pi < 30h^{-1}\text{ Mpc}$ and $16 < r_p < 30h^{-1}\text{ Mpc}$ for $\xi_\rho(r_p, \pi)$. The black cross indicates the best-fitting value for the solid black contours.

Figure 9. This plot shows the likelihood distribution of the galaxy bias b and σ_8, which we obtained by fitting the 6dFGS 2D correlation function assuming $\gamma = 0.55$. The solid black line shows the result using a prior on the Hubble constant of $H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ from Riess et al. [2011], while the dashed black line uses a prior on $H_0 = 67 \pm 3.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ from Beutler et al. [2011]. Although the detection of redshift-space distortions can partially break the degeneracy between b and σ_8, which exists in the 1D correlation function, there is still a significant residual degeneracy. The black cross marks the maximum likelihood value for the solid black lines.

© 0000 RAS, MNRAS 000, 000–000
and \(\sigma_p = 174 \pm 73 \text{ km/s} \). The remaining degeneracy between the bias \(b \) and \(\sigma_s \) is illustrated in Figure 9. We include all these results in Table I.

Figure 10 compares the 6dFGS \(\Omega_m - \sigma_s \) probability distribution to measurements from several other datasets: The CFHT wide synoptic Legacy Survey (CFHTLS) \citep{Fu2008}, the SFI++ peculiar velocity survey \citep{Nusser2011}, cluster abundance from X-ray surveys \citep{Mantz2010} and WMAP7 \citep{Komatsu2011}. Many of the experiments shown in this figure have systematic modelling uncertainties when extrapolating to \(z = 0 \) arising from assumptions about the expansion history of the Universe. Only 6dFGS and SFI++ are at sufficiently low redshift to be independent of such effects. To illustrate the impact of these effects we plot in Figure 11 the probability distribution \(\Omega_m - \sigma_s \) from WMAP7 for different cosmological models. The CMB measures the scalar amplitude \(A_s \), which needs to be extrapolated from redshift \(z_s \approx 1100 \) to redshift zero to obtain \(\sigma_s \). Every parameter that influences the expansion history of the Universe in this period affects the value of \(\sigma_s \) derived from the CMB alone. The relation between \(A_s \) and \(\sigma_s \) is given by (e.g. Takada, Komatsu & Futamase 2004)

\[
\sigma^2_s(z) = A_s \left(\frac{2z^2}{5\Omega_m H_0^2} \right)^2 \int_0^\infty k^3 dk D^2(k, z) T^2(k) \left(\frac{k}{k_s} \right)^{n_s-1} \times \left[\frac{3 \sin(kR)}{(kR)^3} - \frac{3 \cos(kR)}{(kR)^2} \right]^2,
\]

(45)

where \(R = 8h^{-1} \text{ Mpc} \), \(k_s = 0.02 \text{ Mpc}^{-1} \) and \(A_s = (2.21 \pm 0.09) \times 10^{-9} \) \citep{Komatsu2004}. \(D(k, z) \) is the growth factor at redshift \(z \) and \(T(k) \) is the transfer function. If higher-order cosmological parameters such as the dark energy equation of state parameter \(w \) are marginalised over, then the measurements of \(\Omega_m \) and \(\sigma_s \) weaken considerably (see Figure 11).

We now assess the influence of the \(H_0 \) prior. We replace the result of \cite{Riess2011} with a measurement derived from the 6dFGS dataset using Baryon Acoustic Oscillations \citep{Beutler2011}. The prior from this study is lower than the former value and is given by \(H_0 = 67 \pm 3.2 \text{ km s}^{-1} \text{ Mpc}^{-1} \). Using the 6dFGS value of \(H_0 \) results in \(\sigma_s = 0.75 \pm 0.13 \), \(\Omega_m = 0.279 \pm 0.028 \), \(b = 1.52 \pm 0.29 \) and \(\sigma_p = 174 \pm 106 \text{ km/s} \). The quality of the fit is \(\chi^2/\text{d.o.f.} = 1.35 \), very similar to the value obtained with the HST prior. Comparing the two results shows that a different prior in \(H_0 \) shifts the constraint in \(\sigma_s \) and \(b \) along the degeneracy shown in Figure 9. However, we note that the 6dFGS measurement of \(H_0 \) is derived from the same dataset as our present study and hence could be correlated with our measured growth rate. We use these results only for comparison, and include the values obtained using the HST prior in Table I as our final results of this section.

Alternative methods for deriving \(\sigma_s \) or \(f \sigma_8 \) at low redshift are provided by peculiar velocity surveys (e.g. \cite{Gordon2007, Abate2009, Nusser2011, Davis2011, Hudson2012}). 6dFGS will soon provide its own peculiar velocity survey of around 10 000 galaxies. Velocity surveys have the advantage of tracing the matter density field directly, without the complication of a galaxy bias. However, they are much harder to obtain and current...
velocity surveys are 1 – 2 orders of magnitude smaller than galaxy redshift surveys.

7 COSMOLOGICAL IMPLICATIONS

In this section we test General Relativity by measuring the growth index γ. We would like to stress that the γ-parameterisation of modified gravity has its limitations and other more general parameterisations have been proposed (see e.g. Silvestri & Trodden 2006; Bean & Tangmatitham 2010; Daniel & Linder 2011). However, this is going beyond the scope of this paper.

We combine our result for $g_\theta(z_{\text{eff}})$ with the latest results from WMAP7 (Komatsu et al. 2011), where we use the WMAP7.2 dataset provided on the NASA webpage. While ΛCDM predicts $\gamma \approx 0.55$, alternative theories of gravity deviate from this value. One example of such an alternative model is the DGP braneworld model of Dvali, Gabadadze & Porrati (2000), in which our observable Universe is considered to be a brane embedded in a higher dimensional bulk space-time and the leakage of gravity force propagating into the bulk can lead to the current accelerated expansion of the Universe. Because of the missing dark energy component, this model predicts a larger growth index of $\gamma \approx 0.69$ (Linder 2005).

In Figure 12 we compare measurements of the growth of structure g_θ from different galaxy redshift surveys. For

![Figure 12](http://lambda.gsfc.nasa.gov/product/map/dr4/likelihood_get.cfm)

The WMAP7 dataset results from WMAP7 (Komatsu et al. 2011), where we use the cosmological parameters $\Omega_m = 0.27$. We also included a WALLABY forecast with a 4% error bar in red (see section 5.5). For the WiggleZ survey we also include the data points from Blake et al. (2011b) (empty triangles, shifted by $\Delta z = 0.005$ towards the right for visibility), where the Alcock-Paczynski effect has been taken into account. We plot a ΛCDM model as well as a DGP model for comparison.

8 FUTURE LOW-REDSHIFT GALAXY SURVEYS: WALLABY AND TAIPAN

In this section we make predictions for the accuracy of $f\sigma_8$ measurements from future low-redshift galaxy surveys using
Figure 13. Likelihood distribution of $\gamma - \Omega_m$ for our fit to $\Omega_m = 0.423 \pm 0.065$ from 6dFGS and WMAP7 [Komatsu et al. 2011]. The 6dFGS contours (black) include a normalisation prior from WMAP7. Marginalising over the different parameters in the MCMC chain gives $\Omega_m = 0.271 \pm 0.027$ and $\gamma = 0.547 \pm 0.088$. The low redshift of 6dFGS makes this measurement particularly sensitive to γ and independent of systematic effects like the Alcock-Paczynski distortion.

A Fisher matrix analysis based on [White, Song & Percival 2003] shows that HI-selected galaxies possess a low bias (~ 0.7). However, this fact also implies that WALLABY galaxies sample the density field in a manner that avoids high-density regions. These high-density regions are an important source of non-linear redshift-space distortions (“finger-of-God” effect). We can hence suppose that non-linear effects will be smaller in amplitude in an HI survey compared to highly-biased surveys such as 6dFGS (see e.g. Simpson et al. 2011 or Figure 4 in Reid & White 2011). This should allow the inclusion of much smaller scales in the analysis, producing more accurate measurements. A more detailed analysis using WALLABY mock catalogues is in preparation.

The WALLABY survey will target galaxies rich in HI gas. Such galaxies will mostly populate under-dense regions of the Universe, because in groups and clusters galaxies are stripped of their gas by interactions with other galaxies and the intra-group and intra-cluster medium. This is the reason that HI-selected galaxies possess a low bias (~ 0.7). However, this fact also implies that WALLABY galaxies sample the density field in a manner that avoids high-density regions. These high-density regions are an important source of non-linear redshift-space distortions (“finger-of-God” effect). We can hence suppose that non-linear effects will be smaller in amplitude in an HI survey compared to highly-biased surveys such as 6dFGS (see e.g. Simpson et al. 2011 or Figure 4 in Reid & White 2011). This should allow the inclusion of much smaller scales in the analysis, producing more accurate measurements. A more detailed analysis using WALLABY mock catalogues is in preparation.

McDonald & Seljak (2004) have suggested that multiple tracers within the same cosmic volume can be used to reduce the sampling variance and improve cosmological parameter constraints (see also Seljak 2003; Slosar 2004; Bernstein & Cal 2011). Using the ratio of the perturbation amplitudes of two surveys with different bias factors gives

$$ \frac{b_1 + f \mu_b^2}{b_2 + f \mu_b^2} = \frac{\alpha b_2 + f \mu_b^2}{b_2 + f \mu_b^2}, $$

where $\alpha = b_1/b_2$. The angular dependence of this expression allows one to extract f without any dependence on the density field (see Figure 1 in Bernstein & Cal 2011). The density field is the source of the sampling variance error, since it will change, depending on the patch of the sky which is observed. Using the ratio of two tracers, the precision with which the growth rate f can be determined is (in principle) only limited by the shot noise, and not by the sampling variance.

The three surveys discussed above, 6dFGS, WALLABY and TAIPAN, have a large overlapping volume which allows the potential application of this method. The technique works best for densely-sampled surveys with very different bias factors, b_1 and b_2. While TAIPAN and 6dFGS have very similar bias, the bias of WALLABY will be much smaller.

We assume an overlap volume of $0.41 \times 0.12h^{-3}$ Gpc3, with $81,971$ galaxies. Using $k_{\text{max}} = 0.1h$ Mpc$^{-1}$ we forecast a measurement of $f\sigma_8$ of 23%, while using $k_{\text{max}} = 0.2h$ Mpc$^{-1}$ produces a 8.3% error. The actual error in $f\sigma_8$ we found in this paper is 13%, somewhere between these two values. For WALLABY and TAIPAN we will report constraints for both $k_{\text{max}} = 0.1h$ Mpc$^{-1}$ and $k_{\text{max}} = 0.2h$ Mpc$^{-1}$.

With the specifications given above and using $k_{\text{max}} = 0.1(0.2)h$ Mpc$^{-1}$, the Fisher matrix forecast for WALLABY is a measurement of $f\sigma_8$ with $10.5(3.9)\%$ error. We included the WALLABY forecast with a 4% error-bar in Figure 13. The model TAIPAN survey produces forecast errors of $13.2(4.9)\%$, improving the results from 6dFGS by almost a factor of two. Although TAIPAN maps a larger volume of the Universe compared to WALLABY, it does not produce a better measurement of $f\sigma_8$. WALLABY has a smaller galaxy bias, which increases the redshift-space distortion signal by a factor of two compared to TAIPAN. This will also be very useful for breaking the degeneracy between bias and σ_8 using the technique of section 6.2.

The WALLABY survey will target galaxies rich in HI gas. Such galaxies will mostly populate under-dense regions of the Universe, because in groups and clusters galaxies are stripped of their gas by interactions with other galaxies and the intra-group and intra-cluster medium. This is the reason that HI-selected galaxies possess a low bias (~ 0.7). However, this fact also implies that WALLABY galaxies sample the density field in a manner that avoids high-density regions. These high-density regions are an important source of non-linear redshift-space distortions (“finger-of-God” effect). We can hence suppose that non-linear effects will be smaller in amplitude in an HI survey compared to highly-biased surveys such as 6dFGS (see e.g. Simpson et al. 2011 or Figure 4 in Reid & White 2011). This should allow the inclusion of much smaller scales in the analysis, producing more accurate measurements. A more detailed analysis using WALLABY mock catalogues is in preparation.

McDonald & Seljak (2004) have suggested that multiple tracers within the same cosmic volume can be used to reduce the sampling variance and improve cosmological parameter constraints (see also Seljak 2003; Slosar 2004; Bernstein & Cal 2011). Using the ratio of the perturbation amplitudes of two surveys with different bias factors gives

$$ \frac{b_1 + f \mu_b^2}{b_2 + f \mu_b^2} = \frac{\alpha b_2 + f \mu_b^2}{b_2 + f \mu_b^2}, $$

where $\alpha = b_1/b_2$. The angular dependence of this expression allows one to extract f without any dependence on the density field (see Figure 1 in Bernstein & Cal 2011). The density field is the source of the sampling variance error, since it will change, depending on the patch of the sky which is observed. Using the ratio of two tracers, the precision with which the growth rate f can be determined is (in principle) only limited by the shot noise, and not by the sampling variance.

The three surveys discussed above, 6dFGS, WALLABY and TAIPAN, have a large overlapping volume which allows the potential application of this method. The technique works best for densely-sampled surveys with very different bias factors, b_1 and b_2. While TAIPAN and 6dFGS have very similar bias, the bias of WALLABY will be much smaller.

We assume an overlap volume of $0.41 \times 0.12h^{-3}$ Gpc$^3 = 0.049h^{-3}$ Gpc3, where we multiply the sky coverage of 6dFGS and TAIPAN with the effective volume of WALLABY. For the different surveys we use the parameters as stated above. We forecast Fisher matrix constraints on $f\sigma_8$.
of 10.3 (5)% using $k_{\text{max}} = 0.1 (0.2) h \text{Mpc}^{-1}$. Because this overlap volume is only $\approx 1/3$ of the WALLABY volume, this result does not improve the measurement arising from WALLABY alone, especially considering that WALLABY itself may be able to include modes up to large k_{max} in the fitting process.

Our results show that future surveys such as WALLABY and TAIPAN will provide an accurate measurement of $f\sigma_8$ at low redshift, and will be able to complement future high-redshift surveys such as BOSS, which will have a similar accuracy for several data points over the higher redshift range $0.2 - 0.6$ (Song & Percival 2002, White, Song & Percival 2003, Reid & White 2011).

9 CONCLUSION

In this paper we have measured the 2D correlation function of the 6dF Galaxy Survey. We derived a covariance matrix using jack-knife resampling as well as log-normal realisations and showed that both techniques give comparable results. We have modelled the 2D correlation function with a simple streaming model and a more advanced approach suggested by Soccimarrad (2004) combined with the N-body calibrated results from Jennings, Baugh & Pascoli (2011a). We formulated these models in real-space including wide-angle corrections. For the final results on $f\sigma_8$ we chose the model by Soccimarrad (2004), although we found that both models gave consistent results at sufficiently large scales.

We analysed the measurement in two different ways. First we fitted for the two parameters $g_0(z_{\text{eff}}) = f(z_{\text{eff}})\sigma_8(z_{\text{eff}})$ and $g_0(z_{\text{eff}}) = b\sigma_8(z_{\text{eff}})$, where these constraints depend only on the 6dFGS data. Our second analysis method assumes a growth index from standard gravity ($\gamma \approx 0.55$) and fits for σ_8, b, Ω_m, H_0 and σ_8, where we combine the 6dFGS measurement with a prior in the Hubble constant. All parameter measurements are summarised in Table 1. We can summarise the results as follows:

- Our first analysis method found $g_0(z_{\text{eff}}) = f(z_{\text{eff}})\sigma_8(z_{\text{eff}}) = 0.423 \pm 0.055$ and $g_0(z_{\text{eff}}) = b\sigma_8(z_{\text{eff}}) = 1.134 \pm 0.073$, at an effective redshift of $z_{\text{eff}} = 0.067$. The 6dFGS measurement of g_0, unlike high-redshift measurements, does not depend on assumptions about the expansion history of the Universe and the Alcock-Paczynski distortion.

- In our second analysis method we used the angle dependence of redshift-space distortions in the 2D correlation function to break the degeneracy between the galaxy bias b and the normalisation of the matter clustering statistic σ_8, assuming standard gravity. We found $\sigma_8 = 0.76 \pm 0.11$, $\Omega_m = 0.250 \pm 0.022$, $b = 1.48 \pm 0.27$ and $\sigma_8 = 174 \pm 73$ km/s. This result uses a prior on H_0 from Riess et al. (2011).

- Combining our measurement of $g_0(z_{\text{eff}})$ with WMAP7 (Komatsu et al. 2011) allows us to measure the growth index γ, directly testing General Relativity. We found $\gamma = 0.547 \pm 0.088$ and $\Omega_m = 0.271 \pm 0.027$, in agreement with the predictions of General Relativity ($\gamma \approx 0.55$).

The 6dFGS measurement of this parameter is independent of possible degeneracies of γ with other parameters which affect the correlation function at high redshift, such as the dark energy equation of state parameter w.

- We used a Fisher matrix analysis to forecast the constraints on $f\sigma_8$ that would be obtained from two future low-redshift galaxy surveys, WALLABY and TAIPAN. We found that WALLABY will be able to measure $f\sigma_8$ to a forecast accuracy of 10.5% for $k_{\text{max}} = 0.1 h \text{Mpc}^{-1}$ and 3.9% for $k_{\text{max}} = 0.2 h \text{Mpc}^{-1}$. A combination of 6dFGS, TAIPAN and WALLABY, using the multiple-tracer method proposed by McDonald & Seljak (2000), will be able to constrain $f\sigma_8$ to $5 - 10.3%$. These measurements would complement future large-volume surveys such as BOSS, which will measure the growth rate at much higher redshift ($z > 0.2$), and contribute to future precision tests of General Relativity on cosmic scales.

ACKNOWLEDGMENTS

The authors thank Alex Merson for providing the random mock generator. We thank Alexandra Abate, Liping Fu, Patrick Henry, Adi Nusser, Adam Manz and Alexey Vikhlinin for providing their results for comparison. We are also grateful to David Parkinson for help with CosmoMC and Yong-Seon Song, Takahiko Matsubara, Martin Meyer, Morag Scrimgeour and David Rapetti for fruitful discussions.

F.B. is supported by the Australian Government through the International Postgraduate Research Scholarship (IPRS) and by scholarships from ICRAR and the AAO. Part of this work used the iVEC@UWA supercomputer facility. GBP acknowledges support from two Australian Research Council (ARC) Discovery Projects (DP0772084 and DP1093738). The 6dF Galaxy Survey was funded in part by an Australian Research Council Discovery Projects Grant (DP-0208876), administered by the Australian National University.

REFERENCES

Bernstein G. M., Cai Y. -C., [arXiv:1104.3862 [astro-ph.CO]].

© 0000 RAS, MNRAS 000, 000–000
APPENDIX A: PARTIAL ANALYTICAL SOLUTION FOR THE CORRELATION FUNCTION MOMENTS INTEGRAL

The double integrals in eqs. 38 and 38 are difficult to solve numerically. Here we show an analytical solution for the integral over μ which allows for a faster numerical solution of the full integral. First we re-write eq. 38 as

$$\xi_{\ell,xy}^m(r) = \int_0^\infty \int_{-1}^1 \frac{k^m dk}{(2\pi)^2} e^{-(k\mu \sigma_v)^2} \times \cos(kr\mu) D_{xy}(k) P_i(\mu)$$

$$= \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) \int_{-1}^1 d\mu e^{ikr\mu-(k\mu \sigma_v)^2} P_i(\mu),$$

where i is the complex number. More generally the integral over μ can be written as

$$F_n(\mu) = \int_{-1}^1 d\mu e^{ikr\mu-(k\mu \sigma_v)^2} \mu^n$$

which can be solved analytically. If we set $a = kr$ and $b = (k\sigma_v)^2$ we obtain

$$\int_{-1}^1 d\mu e^{ikr\mu-(k\mu \sigma_v)^2} = \frac{i}{\sqrt{b}} e^{-ia-b} \left[\text{Daw} \left(\frac{a-2ib}{2\sqrt{b}} \right) - e^{2ia} \text{Daw} \left(\frac{a+2ib}{2\sqrt{b}} \right) \right].$$

Taking the n-th derivatives of the real part of the term above gives $F_n(\mu)$. The Dawson integral $\text{Daw}(x)$ can be calculated using the imaginary error function $\text{erfi}(x)$:

$$\text{Daw}(x) = e^{-x^2} \int_0^\infty e^{-y^2} dy$$

$$= \frac{\sqrt{\pi}}{2} e^{-x^2} \text{erfi}(x).$$

We can then construct eq. 38 for the different correlation function moments:

$$\xi_{\ell=0,xy}^m(r) = \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) F_0(\mu)$$

$$\xi_{\ell=1,xy}^m(r) = \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) F_1(\mu)$$

$$\xi_{\ell=2,xy}^m(r) = \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) \frac{1}{2} [3F_2(\mu) - F_0(\mu)]$$

$$\xi_{\ell=3,xy}^m(r) = \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) \frac{1}{2} [5F_3(\mu) - 3F_1(\mu)]$$

$$\xi_{\ell=4,xy}^m(r) = \int_0^\infty \frac{k^m dk}{(2\pi)^2} Q_{xy}(k) \frac{1}{8} [35F_4(\mu) - 30F_2(\mu) + 3F_0(\mu)]$$

and so on.