The Fundamental Plane, Stellar Populations, and Environment

Results from the 6dF Galaxy Survey

Matthew Colless

Heath Jones, Rob Proctor, Christina Magoulas, Chris Springob, Lachlan Campbell, Philip Lah, Alex Merson & the 6dFGS team

Galaxy Evolution and Environment, Malaysia, 2009

Some things we know...

- Some of the things we know (or think we know) about stellar populations in early-type galaxies, the Fundamental Plane and the effects of environment...
 - The stellar populations are mostly old or very old, though with exceptions, and sometimes with a 'frosting' of young stars
 - The stellar populations are generally metal-rich, with significantly enhanced α-element abundances
 - There are strong trends of age, metallicity and α-enhancement with velocity dispersion / M_{star} / M_{dyn} (σ may be best predictor?)
 - ◆ Early-type galaxies (and bulges) form a Fundamental Plane in size/velocity dispersion/surface brightness (logR – logσ – logI) space, with relatively small (15-20%) intrinsic scatter in R
 - Stellar populations properties and measures of environment (often ill-defined) show correlations, but they are entangled with mass-environment and morphology-environment correlations

Some things we don't know...

□ Some of the (many) things we don't know (at least not well)...

- What is the relation between stellar mass and dynamical mass, and how does this vary with parent halo mass & environment?
- How do the observed trends in stellar populations vary with environment (NN/local density/cluster radius/cluster richness)?
- What is origin of the 'tilt' of the FP and its variation with λ? How much is due to stellar population variations and how much is due to structural non-homology or variations in M_{star}/M_{dark}?
- What is the origin of the scatter about the FP? Are there extra (hidden) parameters or is it due to the intrinsic stochasticity of galaxy formation? Is environment a factor?
- A very large, uniform, stellar-mass-selected spectroscopic survey would surely help in answering these questions!

The 6dF Galaxy Survey

- □ Spectroscopic survey of southern sky with b>10° (17,000 deg²)
- Primary sample from 2MASS with K_{tot}<12.75; also secondary samples with H<13.0, J<13.75, r<15.6, b<16.75 (SuperCosmos)</p>
- □ The 6dFGS is both a <u>redshift</u> and a <u>peculiar velocity</u> survey
- □ FP distances and PVs for ~10,000 brightest early-type galaxies

6dFGS z-survey

- Median redshift ~15,000 km/s
- **D** Effective volume $\sim 2 \times 10^7 \, h^{-3} \, Mpc^3$
- □ 125,000 redshifts (137,000 spectra)
- Primary sample mean completeness 88%; selection function is well-defined (depends on both position and magnitude)

Comparison of surveys

				cz (km s ⁻	9
	6dFGS	2dFGRS	SDSS-DR7	- 0 <u>20000</u> 4000 10000 -	0 60000
Magnitude limits	K < 12.65	$h_{\rm c} < 10.45$	r < 17 77		DR5
Magintude minto	$H \le 12.95$	0J 🖉 13.40	(Petrosian)		SDSS
	$J \le 13.75$		(1 001 001011)	0 6000 - Z = 0.054	SdEGS
	$r_{\rm F} \leqslant 15.60$			20	edian z volumes
	$b_{ m J}\leqslant 16.75$				N
Sky coverage (sr)	5.2	0.5	2.86	تو 2000 - M \ 6dFGS	in and the second s
Fraction of sky	41%	4%	23%		and the second second
Extragalactic sample, N	125071	221414	644951	Z 0 0.05 0.1	0.15 0.2
Median redshift, $z_{\frac{1}{2}}$	0.053	0.11	0.1	Z	
Volume V in $[0.5z_{\frac{1}{2}},$)	Median z aperture sizes	JECC
$1.5 z_{rac{1}{2}}] \qquad (h^{-3}{ m Mpc}^2{ m 3})$	$2.1 imes 10^7$	$1.7 imes 10^7$	$7.6 imes 10^7$		ares
Sampling density at $z_{\frac{1}{2}}$,					
$\bar{\rho} = \frac{2N}{3V}$ $(h^3 \mathrm{Mpc}^{-3})$	4×10^{-3}	9×10^{-3}	6×10^{-3}		
Fibre aperture $('')$	6.7	2.0	3.0		
Fibre aperture at $z_{\frac{1}{2}}$			/		
$(h^{-1}\mathrm{kpc})$	4.8	2.8	3.9		4.8
				SDSS 2	dFGRS

.

6dFGS database: www.aao.gov.au/6dFGS

□ Final Data Release

- DR3 public 1 April 2009
- Complete <u>z-survey</u> data
- ◆ 1464 fields, 137k spectra
- 125k unique redshifts
- Jones et al. (2009) see astro-ph/0903.5451
- □ 6dFGS online database
 - Searchable via SQL queries or WWW form
 - Spectra and images in a multi-extension FITS file
 - Target catalogues are fully searchable online

- □ <u>*v*-survey</u> information for bright early-type galaxies (not yet public)...
 - >20k galaxies with Lick indices giving age, metallicity and α -enhancement
 - >10k galaxies with velocity dispersion, effective radius, surface brightness

The present-day stellar mass density

The 6dFGS data provides (up to systematic errors in models) a very precise measurement of the present-day stellar mass density

□ Stellar mass density is $\rho_{\star} = (5.00 \pm 0.11) \times 10^8 \text{ h M}_{\odot} \text{ Mpc}^{-3}$ which corresponds to $\Omega_{\star} \text{h} = 0.00180 \pm 0.00004$ (statistical)

Luminosity density in optical and NIR

- The luminosity densities in optical and NIR estimated from 6dFGS are broadly consistent with the 2dFGRS and SDSS results
- K-band luminosity density lies at lower end of literature range
- From optical through NIR, the variation of luminosity density with wavelength is <u>consistent</u> with models for an old stellar population

- Hint of curvature and twisting of the Fundamental Plane?
- □ Selection/bias effect? or real?

Fundamental Plane fitting

- Fit the Fundamental Plane in log R_e-log σ-μ_e space with a 3D
 Gaussian distribution using maximum likelihood method:
 - Empirically, a 3D Gaussian is a better representation of the data than a uniformly populated plane with Gaussian scatter
 - ML fit allows for (possibly correlated) errors in all observables
 - ML fit incorporates selection effects (sample limits in velocity dispersion, magnitude, size, surface brightness and others)

Environment (galaxy density and group structure) in the 6dFGS

Cluster-finding

 Applies the percolation based cluster-finding code used to generate the 2PIGG group catalogue in 2dFGRS [Alex Merson]

Algorithm parameters (e.g. linking lengths) are calibrated via simulations to optimise cluster finding in the 6dFGS

FP variation with richness?

Within the FP, the only apparent variation is that the biggest and most massive galaxies are in the richest clusters

FP variation with richness?

- In terms of the fitted parameters of the FP itself, there appears to be <u>no significant variation</u> over the whole range in richness
- Next step: break these samples down further into age subsets, as there is evidence that age correlates with deviations from the FP (e.g. Graves et al. astro-ph/0903.3603)

Galaxy ages and metallicities

- For the 7000 DR2 galaxies there are Lick indices giving ages, metallicities and α-enhancements (based on fits to Thomas & Maraston SSP models)
- The distribution over age and metallicity shows...
 - Most galaxies have -0.2<[Z/H]<0.3
 - The youngest galaxies have higher minimum metallicities
 - The least metal-rich galaxies have older minimum ages

Real effect or residual degeneracy?

- Estimate residual degeneracy using 10⁶
 Monte-Carlo realisations of best-fit models with actual observed errors
- Residual degeneracy is present, but is much smaller than the agemetallicity trend that is observed
- The old passive galaxies used in the following analysis are clearly distinguished from their younger counterparts

Metallicity and velocity dispersion

- Well-known strong correlation of increasing metallicity with increasing velocity dispersion for both passive galaxies and low-emission galaxies
- The age of the stellar populations shows a weaker correlation with velocity dispersion

Mass-metallicity relations

- Metallicity versus dynamical mass...
 - ♦ >10 Gyr = grey
 - ♦ <1.5 Gyr = black</p>
- Galaxies with old populations show strong correlation of mass and metallicity (projection of joint age–[Z/H]–σ relation) young galaxies do not

 N.B. 6dFGS spectra (and hence the estimated ages & metallicities) are 'central' rather than 'integrated' or 'total'

The tilt of the Fundamental Plane

□ The Virial Theorem predicts

 $\log r = 2 \log \sigma - \log < l > + constant$

where r = effective radius, σ = velocity dispersion, <I> = mean S.B., and where it is assumed that M/L = constant (M $\propto \sigma^2 r$)

□ Observations in the K band give

log r =1.45 log σ - 0.85 log <I> + constant (scatter~15-20%) implying a 'tilt' relative to the virial FP corres. to M/L \propto M^{0.15}; this 'tilt' increases when the FP is measured in bluer bands

□ The tilt in the FP could be produced by...

- Trend in M_{star}/M_{dark} due to variations with galaxy mass of the gas-to-star conversion efficiency, or the IMF, or the DM content
- Non-homology due to varying 'concentration' with galaxy mass
- □ However, age and metallicity effects complicate interpretation

M/L vs M for old galaxies

- Consider only old (>10 Gyr) galaxies and so eliminate age effects
- There is a trend in ی, as سیgested by FP fit The trend is steeper in bluer passband The tre

 - □ The trend of M/L with luminosity is weaker than the trend with mass

Allowing for metallicity (or M/M_{\star} vs M)

- Use Bruzual & Charlot (2003) models to adjust the observed slopes (thick lines) for metallicity trend (dashed)
- L at each M is adjusted to corresponding L at a fixed common [Z/H]; this is the same as computing M/M_{*}
- □ Slope of M/L (or M/M_{*}) with M or L (thin red line) is now <u>identical</u> at all λ
- Conclusion: for <u>old</u> galaxies, the variation in the FP with λ is entirely explained by the metallicity-mass relation

Conclusions

□ 6dFGS is ideal for studying galaxy properties & environment...

- Provides ~10k early-type galaxies for studying the Fundamental Plane
- Recover standard NIR FP fit and scatter also hints of curvature/twisting
- Group/cluster richness has little or no effect on FP...
 - Percolation-based group/cluster catalogue for 6dFGS (like 2PIGG)
 - Fitting to subsamples of isolated/poor group/cluster galaxies shows no evidence of significant variations in the FP
- □ Mass-metallicity-age relations...
 - There is a <u>strong</u> (weak) mass-metallicity relation in <u>old</u> (young) galaxies
 - This implies an age/metallicity/mass manifold (not simply a plane)
- □ Mass-to-light ratios for <u>old</u> galaxies...
 - Allowing for mass-metallicity relation, no trend in M/L with either M or L
 - Equivalent to saying that M/M_{\star} is independent of M and L
 - So star-formation <u>efficiency</u> in old galaxies is independent of halo mass

Inconsistency?

- Observed variation of adjusted M/L (or M/M_{*}) with mass: M/L∝M^{0.142}
- □ But M/L is independent of luminosity, which is odd, as M/L \propto M^{α} \Rightarrow M/L \propto L^{β} where β = α /(1- α)
- □ So $\alpha = 0.14 \implies \beta = 0.17$, whereas we observe $\beta \approx 0$
- To explain this apparent inconsistency we need a more detailed model for the full 3-D distribution in log R_e-log σ-μ_e space
- Residuals to both planes show trends, so 'FP' may be curved or twisted

6dFGS web pages - http://www.aao.gov.au/6dFGS

